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SUMMARY

In this project three specific programmes have been developed, each on a different process and
with a different objective. These Programmes are

Vdidaion of thermocouple measurements in a reheating furnace (AvestaPolarit AB)
It is shown clearly that an ingtaled condition monitor would have detected an anomaly
between measured and caculated temperatures and would have provided a valid estimate of
temperature that could be used to temporarily replace the measurement during the time of
anomaly. Such vdidation must provide the means for more effective energy management of the
furnace by avoiding the positioning of control system set points at ingppropriate temperatures.

Development of a prediction mode for NO, emissionsin areheating furnace (SSAB Tunnplét)
A prediction modd has been developed which gives a satisfactory level of accuracy. Future
developments should focus on incorporating the developed prediction modd into the advisory
system that would indicate which cause variables should be changed and by what amount in
order to minimise NO, emissons while maintaining high productivity.



Investigetion of the use of Multivariate Statistics for the modelling of an acid regeneration
process (SSAB Tunnpl&t)

The investigations with the acid regeneration plant have proven to be less productive than
those reported above for the reheating furnaces. However interesting aspects have been
shown concerning the capability of the Multivariate Statistics to classify regions of process
operation and to relate these regionsto variations in key process varigbles.
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1. Introduction and Background

This project was carried out under the auspices of “The Jernkontoret”, the Swedish
Steel Producers Association in order to investigate the applicability of various
intelligent alarm handling methods in addressing energy related condition monitoring
issues within the steel manufacturing industry. The funds for the project have been
provided by the Swedish Energy Agency (STEM). Industrial applications have been
investigated in two companies in Sweden, SSAB Tunnplat and AvestaPolarit AB. The
work has involved engineers from these two companies and also from Advanced
Process Control Ltd(APC) and Control Technology Centre Ltd(CTC). APC have
provided expertise and consultancy in the field of reheating furnace operations and
related control system design. CTC, a spin out company from the University of
Manchester, has provided engineering services and software to exploit advanced
alarm handling technology based upon techniques in Multivariate Statistical Process
Control (MSPC).

Control Technology Centre Ltd. has been involved for a number of years in
developing the software product MonitorMV, a toolbox of technologies for process
condition monitoring, fault detection and diagnosis. In this project, MonitorMV has
been employed in the development of several condition monitoring solutions for the
steel manufacturing industry. The MonitorMV Product has been under continuous
development throughout the course of this project. CTC has attracted funds from a
variety of companies, from the process control industries and from the mining
industries in order to fund this development. The capability of the product has been
progressed in part on the basis of the various experiences gained in industrial
applications in the chemical, steel and minerals processing industries.

The project commenced in January 2001 and finished in September 2003. During this
period work has progressed to address three specific programmes of work each on a
different process and with a different objective. These Programmes are

Vaidation of thermocouple measurements in a reheating furnace
(AvestaPolarit AB)

Development of a prediction model for NOx emissions in a reheating furnace
(SSAB Tunnplét)

Investigation of the use of Multivariate Statistics for the modelling of an acid
regeneration process (SSAB Tunnplat)

CTC Ltd made 5 visits to both SSAB Tunnpld and AvestaPolarit AB during the
course of this project in order to gain experience of the processes in question and in
order to implement and assess the online capability of the various developments that
have been established with MonitorMV.

2. About MonitorMV

MonitorMV is a toolbox of technologies for process condition monitoring, fault
detection and diagnosis.
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The MonitorMV software includes a range of both standard and state-of-the-art
methods, which fall under the heading of multivariate statistical process control
(MSPC). Technologies included in MonitorMV are Principal Component Analysis
(PCA) and Partial Least Squares (PLS) modelling, clustering, statistica modelling
using either Gaussian or Kernel-based methods and multiple mode set handling for
the real-time monitoring of complex processes. In support of these technologies,
MonitorMV offers a range of visualisation options, including 2D/3D contour plots
and quality control charts aswell as the traditional MSPC plots. A recent development
is MonitorMV Batch, an additional range of tools for tackling condition-monitoring
issues for specifically batch processes.

MonitorMV is composed of two separate software systems, MonitorMV Design and
MonitorMV Online. The primary function of the MonitorMV Design system is that of
an analysis and design tool for the creation of Statistical Models to describe process
data and for the development of Statistical Condition Monitors on the basis of these
models. The primary function of the MonitorMV Online system is that of a rea- time
data collection and condition-monitoring tool. The MonitorMV Online system can
interface with a range of proprietary DCS systems as a basis for the real-time
collection of process data. Such data may then be evaluated with respect to one or
more condition monitoring models previously created using MonitorMV Design. The
MonitorMV Online system also has the capability for executing real-time signal
processing calculations using the MonitorBasic programming language.

Communication between MonitorMV Design and MonitorMV Online is achieved
through Modd Files and Specification Files. Subject to the availability of sufficient
memory, MonitorMV Design and MonitorMV Online may be executed concurrently
on the same computer, or alternatively they may be on separate computers.

In January 2003, a new company, Perceptive Engineering Ltd., was formed in order to
bring MonitorMV to be acommercialy available software package, supported by a
group of advanced control and condition monitoring consultants and engineers. For
further information on MonitorMV, please contact Perceptive Engineering Ltd.
(Wwww. perceptive-engineering.co.uk).

3. Technology Primer

The techniques that have been used in this project fall under a general heading of
Multivariate Statistical Process Control (MSPC). These techniques include Principal
Component Analysis (PCA) and Partia Least Squares, or Projection to Latent
Structures, (PLS) modelling.

The primary objective of an MSPC suite of software is to model and monitor a
process over time in order to detect if statistically significant events, or abnormalities,
occur. This technology relies heavily on the concept of cross correlation in order to
capture the underlying relationships between various process variables that exist
during the normal process operation. Both PCA and PLS are introduced, in some
detail, in the following two sections of this chapter.
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3.1 Principal Component Analysis

Principal Component Analysis (PCA) is a method of extracting the majority of
information from a set of measured signals, i.e. process variables, and expressing it
using a greatly reduced number of variables, known as principal components. This
technique is widely used in areas where large quantities of highly correlated data
needs to be consolidated and, as such, has found significant use in the process
industries. In addition to reducing the dimensionality of problems prior to, for
example, statistical analysis, PCA aso tends to eliminate uncorrelated noise from
multiple measurements.

PCA is based upon the matrix equation:

X =PDQ’ Q)

The matrix X isreferred to as the data matrix and is of dimensions N~ m, where N

is the total number of data points in the data set and m is the number of process
variables. Note that, generally, there are more data points than process variables, i.e.

N >>m.

Therefore, the data matrix, X , can be defined as follows:

7 ~
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where x; is the measurement of variable j at time i. PCA breaks this matrix into
three other matrices, P, D and Q. D is a diagona matrix of dimensons m™ m,
whilst P and Q are orthonormal matrices such that:

PP" =QQ" =1, w)

Traditionally, PCA is performed using Singular Value Decomposition (SVD). This
method allows one to obtain P, D and Q. In particular, the diagonal matrix D

contains m nonnegative principal component amplitudes, in descerding order, thus:
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For the cases with highly correlated variables only the first few diagona terms in
matrix D will have significant values while the remaining ones will be close to zero.
This result corresponds to the fact that the first few principal components are capable
of explaining the majority of the variation (or information) within the measured
signals. In fact, the origina PCA relationship, given in equation (1), can be replaced
by a greatly reduced set of equations:

X =PD.Q’ €©)

where P, isa matrix of dimenson N~ n, consisting of the first n columns of the
matrix P, Q, isamatrix of dimenson m” n, conssting of the first n columns of
the matrix Q and D, isadiagona matrix of dimension n” n, containing the first n

diagona elements of the matrix D. Finaly, X isthe PCA prediction of the original
data matrix.

Thus, the initial data matrix may be approximated to an arbitrary degree by just n
retained principal components.

The score vector t at atimeinstant i is computed from:
ti :[Xil Xig Xim]>Qn (4)

The scores can be plotted in 2D or 3D displays providing graphical representation of
the main features in the data set. This feature has been employed in the case of
statistical analysis of the acid regeneration process, described in section 7.3.

PCA predictions of measured variables at time instant i are then obtained by:

X =tQ] )

In the context of a general condition monitoring application, PCA predictions of
measurements, given in equations (4) and (5), play the key role. In particular, by
observing the prediction error for each variable, i.e. x- X, it is possible to pinpoint
the set of variables that deviate from their expected behaviour. Furthermore, in a case
of the instrument validation, variable that corresponds to a malfunctioning sensor can
then be removed from the calculation of scores, given in equation (4), while the
inference of its true value is still achievable through the use of equation 5.

It is important to note that the number of retained principal components needs to be
carefully chosen. There are a number of techniques that exist for its appropriate
selection. These include, amongst others, auto- correlation, cross- validation,
cumulative percent variance, scree test and so on. MonitorMV allows the methods of
cross- validation and cumulative percent variance to be employed by the user in
selecting a number of principal components. Also, displays of X and X are
available for visua inspection in order to decide on a number of selected principal
components. The kasic approach, when performing PCA using MonitorMV, is to
observe the display given in Figure 1.
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Figure 1

The top graph, coloured in blue, presents the relative value of the diagonal element in
the matrix D, defined earlier in this section, that is associated with the selected
principal component. The bottom graph, coloured in green, is based upon the extent to
which the model explains the data (1 is perfect) with a selected number of retained
principal components, sometimes called cumulative variance. In this particular case, it
is shown that the first principal component contributes 92.94% to the total training
data variation.

In addition MonitorMV allows the user to view plots of measurement and PCA-
based predictiors of each signal considered by PCA analysis, as shown in Figure 2. In
this display PCA- based prediction trends are coloured brown while the measured
signd trends are coloured in blue, green or magenta.
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Figure 2

Finally, a computationally intensive cross-validation method can be employed in the
MonitorMV Design system in order to assist the user in choosing a number of
retained principal components. In this approach, data is subdivided into training and
validating sets. The PCA computation is performed upon the training set and the
prediction errors are evaluated over the validating set. The data is then ‘rotated’ to
give a different split of training and validating sets and the computation is repeated.
As aresult of cross validation calculations a complex statistic of the PCA prediction
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error, abbreviated as PRESS, is computed and presented alongside the amplitudes and
cumulative variance contribution of principal components, as seen in Figure 3.
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Figure 3

The optima number of retained principal components is given a a point where the
PRESS is at its minimum. In the case of Figure 3, the optima number is set to 5.

Finally, it should be noted that the number of retained principal components generally
reflects the number of independent features in the considered data set. Hence, by
using the physical knowledge of the process it may be possible in some cases to
estimate the true number of principal components that should be retained.

3.2 Partial Least Squares (Projection to Latent Structures)

Partial Least Squares or Projection to Latent Structures (PLS) is a method of
identification that offers certain attractive features, both in providing a more robust
identification approach than the Ordinary Least Squares (OLS) approach and as a
basis for multivariate condition monitoring. The basic approach of the algorithm is, as
with PCA, to identify the principal features in the data. However, unlike PCA, PLS
divides the variables into cause and effect. It then identifies the primary features in the
cause variables that are able to describe the variation in the effect variables.

The basic cause- effect structure of PLS, given in matrix form, may be written as:
Y = AX +e (6)

where X and Y represent the input (cause) and the output (effect) matrices
respectively and can be defined as follows:

éxll Xig oo Xim l;' éyll Y2 oo Y L}
é a é u
X = éX21 X22 X2m l:l Y = éy21 y22 y2n l:l
é: ' PO é: R
& u & y
&t Xnz - Xuml eYn1 Ynz -+ Yl
The Error term is described by column vector e, where e = [el e, ... € ]T :
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Note that in this definition of cause and effect matrices it is assumed that there are m
cause variables, n effect variablesand N measurement samples.

The basic PLS agorithm is recursive in nature, with the aim of breaking the matrices
X and Y down into products of the score matrices U and T, and the loadings
vectors, Q and P, thus:

Y =U,Q( +E, (7)
X=T,R +F (8
for the case of k scores or ‘latent variables (LVS).

Note that the issue of choosing the number of latent variables (LVS) is analogous to
that of choosing principa components in PCA analysis, and is, therefore, not
discussed in any detail in this section.

In the first iteration, values are computed for U,, Q,, T, and P, that maximise the

covariance between X and Y . This contribution is then subtracted from the data
matrices and the procedure repeated for subsequent values of U,, Q;, T, and P,

where 1< j£Kk.

In the traditional PLS approach, scores for the k retained latent variables are defined
from the loading vectors of the cause and effect matrices as follows:

T, = XP, 9)

U, =YQ, (10)

whilst the predictions may be generated from the cause and effect variables by using:
X, =T.R’ (11)

Y, =U Q] (12)

The matrices X and Y are now indirectly related through their scores by the so-
caled ‘inner model’, which is smply a linear regression of t, on u, for 1£i £k,
yielding:

U, =T.B, (13)

where B, isamatrix of regression coefficients.

Hence, by substituting (9) into (13) and then substituting (13) into (12) the following
input- output relationship is obtained, which relates input matrix to an output matrix:

Page 11 of 74



YAk = X[PkBkQII ] (14)

In the context of the NOx estimation problem, reported in Chapter 6, PLS has been
employed to extract the main features in the cause variables data and relate these to a
single effect, namely NOx emissions. By employing PLS, as opposed to ordinary |east
squares (OLS) for example, the issue of cross- correlation between different cause
variables is appropriately addressed ensuring a robust prediction model. Hence, the
aim in developing a prediction model can be stated as an appropriate identification of
the expression given in equation (14).

4. Overview of Reheating Furnace Oper ation

This Overview is presented in order that the reader may properly appreciate the
investigations described later in this report.

Reheating furnaces are the first component of the hot-strip rolling mill at the SSAB
factory in Borlange. Their purpose is to reheat the steel dabs from ambient
temperature to around 1200 degrees C. The source of energy is burning (oxidation) of
volatile liquids or gases (heavy fue oil, LPG, naturd gas). As a by- product of
oxidation, nitrogen oxides are produced and discharged into the atmosphere through a
stack.

Reheating furnaces generally consist of three chambers. preheating, heating and
soaking zones. The dlabs are fed into the preheating zone, through the charging door,
and then slowly moved through heating and soaking zones, sequentially. The dabs are
heated roughly to the required temperature in preheating and heating zones. The
purpose of soaking zones is to achieve uniform temperature distribution of the slabs.

The key business drivers for the reheating furnace are given as follows:
Maximise productivity (throughput of slabs)
Minimise running cost (energy consumption)

Minimise negative temperature deviation from the ideal heating curve (avoid
under- heating of the steel slabs)

Maintain gaseous emissions (NOx) within legislation limits.

In order to achieve satisfactory reheating of the steel slabs while avoiding excessive
energy consumption, the furnace is equipped with a Fuel Optimisation Control
System (FOCS). This control system regulates the slabs temperatures by
manipulating set- points of different zone temperature PID- based local control loops.
PID controllers, in turn, control the zone temperature by manipulating the air and fuel
flow rates into the zore burners.

A Diagram and Specification of the reheating furnace U302 at the SSAB site in
Borlange, Sweden, is given in Figure 4.
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Reheating Furnace U302
Building year: 1982
Manufacturer: Italimpianti
Capacity: 300 ton/h
Burner zones: 9
Burners: 119
Fuel: Heavy fud oil
Length: 36.3 m
Slab extraction temp: 1150-1250 C
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Figure 4
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5. Sub-Project 1; The Validation of the Ther mocouple M easurements
using Principal Component Analysis

5.1 Introduction

A fundamental concept in any automatic control system is the utilisation of feedback,
which is achieved by means of real-time measurement of the variables that are to be
controlled and the variables that give rise to disturbances but which cannot be
controlled. It is essential, for satisfactory control system performance, that these
measurements are reliable and consistent. Any improvement in the robustness of
control system measurements makes a direct contribution to the overall reliability of
the control system.

Furthermore, general sensor equipment is susceptible to long- term drifts and sudden
failures. These mafunctions result in off-quality product, less than optimum vyields,
under utilised capacity and unnecessary emergency shutdowns amongst other things.
Therefore, improvement in measurement reliability also has a direct impact on key
business drivers in any manufacturing industry.

The Fuel Optimisation Control System (FOCS) scheme, employed in the reheating
furnaces of the hot-strip rolling mills, relies heavily on accurate temperature
measurement inside the different furnace zones. These thermocouple- measured
temperatures are used as measurements in local RD- based control schemes (one
controller for each furnace zone) as well as for the initia conditions in dab
temperature calculations. Hence, the reliability of these sensors has an important
impact on the performance of the overall reheating furnace cortrol system.

The impact of faulty or erroneous temperature measurement in a reheating furnace is
twofold. In the case where the measured value is below the actual temperature,
excessive fuel is used in the furnace burners. This in turn increases the energy
consumption, which is probably the main business driver for this process. On the
other hand, if the measured value is above the actual temperature then the product
quality may be degraded. Hence, in either case an important business driver is
adversely affected by the failure of instrumentation equipment to provide accurate and
reliable feedback measurement.

This sub-project is concerned with the validation of such measurement and is based
on the principle d redundancy through the utilisation of the Principal Component
Analysis (PCA) method. In particular, the presence of cross- correlation between
different thermocouple measurements is exploited for the detection of faulty
thermocouples and for subsequent estimation of the true values of the associated
temperatures.

This sub- project has been carried out at the AvestaPolarit site in Avesta, Sweden. The
system, described in this report is currently under trial in AvestaPolarit and is
expected to find its way to the control room of the reheating furnace as a valuable tool
in addressing the reliability of instrumentation equipment.
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5.2 Training Data

The data that is used for the development of PCA models has a direct impact on the
performance of the resulting condition monitor. In particular, since the data used for
training generally represents the normal state of the affairs, great care must be taken
not to include those periods during which problems were encountered with the
process itself or with individual instrumentation units.

In this particular case, training data were chosen from a 2 month period covering
March and April 2003, taken for 24 thermocouples which are situated in all of the
zones of the reheating furnace. Data points that correspond to the periods during
which maintenance of the rolling mill was performed have been excluded from the
training data since such data are not consistent with those of normal process
operation

Note that, ideally, training data sets should be chosen to correspond to those periods
of time that follow immediately after thermocouple re-calibration takes place. Should
it be seen that there is significant difference in the statistical interpretation when
compared with earlier training, this will indicate there might have been some
weakness in the calibration procedure that should be investigated (e.g. such as a
thermocouple being displaced within its mounting pocket). Proper calibration is vital
if energy management issues of a furnace are to be properly addressed.

5.3 Development of Condition Monitors

5.3.1 Introduction

The first step in the development of statistical models is to observe the cross
correlation between various signals. Such information may help in grouping highly-
correlated signals into one set to be considered by a single condition monitor. Also, in
the case of mutually uncorrelated sets of highly correlated variables, correlation
analysis may provide a clue as to how many principal components are required to
adequately represent the training data set. However, caution is in order at this point
due to the fact that the training data represents a normal operating regime. There may
not be sufficient excitation of the key cause variables of a process in order to bring out
inter-relationships between process variables and, therefore, correlation analysis may
produce misleading results. Hence, the results from the correlation analysis are to be
taken with some caution. So unsurprisingly, process-oriented knowledge may be
much more valuable asset in addressing issues concerning statistical modelling rather
than ‘blind’ correlation analysis.

Due to the character of operation and the geometric shape of the reheating furnace,
thermocouple measurements from different zones are not as highly correlated as one
may expect. In fact, there is very little correlation between thermocouple
measurements from different zones. For example, temperature measurements from the
preheating zones are almost completely uncorrelated with temperature measurements
from the soaking zones.

In order to improve accuracy of the fault detection/diagnosis scheme it has been
decided to design three condition monitors that would focus on different sections of
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the reheating furnace. The criterion for grouping of thermocouples for each condition
monitor has been taken to be the level of cross-correlation between these
measurements as well as their mutual closeness in physical sense. Also the attempt
has been made to minimise the number of PCA-based condition monitors in order to
keep the real-time application reasonably simple. Thus three such monitors have been
considered — Condition Monitors 1000, 2000 and 3000.

5.3.2 Development of Condition Monitor 1000

This condition monitor considers 4 thermocouples. These are subdivided into 2
mutually uncorrelated sets of aimost identical signals. Each set belongs to a particular
zone in the reheating furnace. In particular, T1 Oster and T15 Vaster are situated in
the bottom of the dark zone while T10 Oster and T24 Vaster are located in the
preheating zone 7. Since these signals constitute two sets of perfectly correlated
variables, which are mutually uncorrelated, one would expect two principal
components, which is indeed the case as shown in Figure 5.

Select Number of Scores i‘

Armplitude = 0.6314606 from iterm 2

Contribution = 0.9998238 from 2 items

Apply| Cancel] PreviuusTrend] NextTrendJ

Figure 5

In this particular case it is shown that first two principal components contribute
99.98% to the total training data variation.

Results of the statistical analysis performed on the prediction errors for these four
signals over the month of June (validating data set) are given below in Table 1.

Signal ID Mean | Deviation|Maximum| Minimum
T1_Oster 0.11 0.99 5.01 -6.28
T10_Oster 0.08 0.39 3.36 -2.65
T15 Vaster| -0.11 1 6.33 -5.06
T24 Vaster| -0.08 0.39 2.65 -3.35
Table1

While Table 1 shows that the developed model is highly accurate in predicting
thermocouple measurements, the total number of highly cross- correlated signals is
small. As aresult, the true value of the temperature related to a faulty thermocouple
cannot be estimated by this condition monitor since the level of redundancy is small.
Nevertheless, such an accurate condition monitor would be able to accurately identify
the particular zone of the reheating furnace within which one of the two
thermocouples is malfunctioning. Identification of a particular faulty thermocouple
would, however, have to be left to a process engineer at a site.
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5.3.3 Development of ConditionMonitor 2000

Variables that are considered by this condition monitor represent pairs of highly
correlated thermocouples, belonging to the same reheating furnace zone. In particular,
thermocouples from the upper dark zone (T2_Oster and T16 Vaster), preheating zone
8 (T11 Oster and T25 Vaster), heating zone 1 (T3 Oster and T17 Vaster) and
heating zone 2 (1004.ME and 1017.ME) as well as those situated in the bottleneck
between heating and soaking zones (T13 Oster and T27_Vaster) are considered by
this monitor.

Amplitudes of individua principa components and their cumulative contribution to
the total variation of the training data set are displayed below in Figure 6.

Select Number of Scores i‘
Amplitude = 023351254 from item &

.

Contribution = 0.957 2591 36 from 5 items

Apply| Cancell PreviuusTrend‘ Ne}ftTrendJ

Figure 6

In this case it has been decided to choose 5 principal components, which contribute
95.73% to the total variation in the training data set. Note that the contribution to the
total variation does not change significantly as the number of principal components
changes from 4 to 5, as seen in Figure 6. There are two reasons why 5 components
have been chosen rather than 4. Firstly, these 10 thermocouple measurements are
grouped into 5 pairs that are situated in the same zone. Hence, it is expected that there
would be at most 5 principal components. Note that any further reduction in a number
of principal components would arise from the cross correlation between different
pairs of thermocouple measurements. Therefore, it is reasonable to set upper bound on
the number of principal componentsto 5. Secondly, observations of prediction errors,
when evaluated over the validating data set (June 2003) reveal the benefit in choosing
5 rather than 4 principal componerts. Furthermore, by employing cross- validation
scheme, through the computation of PRESS statistic, it is found once again that 5 PCs
isan optimal choice for this model.
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Figure 7
The tables given below contain results of the statistical analysis, performed on the
validating data set (June 2003), of prediction errors for both PCA models.

PCA with 4 Principal Components
Signal ID Mean | Deviation|Maximum| Minimum
T2_Oster 1.04 16.15 98.44 -66.61

T3_Oster -1.14 5.2 17.04 -27.88
T4_Oster -2.86 10.12 33.61 -47.21
T11_Oster -0.03 12.55 44 -40.09
T13_Oster 0.04 5.64 25.8 -41.91
T16_Vaster| -2.06 12.52 65.58 -87.82
T17_Vaster 2.18 4.07 22.76 -14.07

T18 Vaster| -1.11 15.91 58.98 -60.45
T25_Vaster 5.07 13.66 65.52 -42.13

T27_Vaster 0.34 6.28 52.14 -31.99
Table 2
PCA with 5 Principal Components
Signal ID Mean | Deviation|Maximum| Minimum
T2_Oster 2 14.24 89.7 -75.66
T3_Oster -1.72 3.5 13.41 -21.12
T4 _Oster -1.84 5.79 19.91 -28.03
T11_Oster -1.51 5.64 33.47 -30.79
T13_Oster -0.46 5.07 24.64 -40.88
T16_Vaster| -2.06 12.78 64.76 -88.65
T17 Vaster| 2.09 3.78 23.9 -13.99
T18 Vaster 0.48 6.61 43.07 -35.88
T25_ Vaster 4.1 8.73 44.33 -22.25
T27_Vaster 0.74 6.34 51.36 -31.11
Table3

In these tables it is observed that the standard deviation of the PCA model with5 PCs
IS reduced, in some cases significantly, when compared with PCA model having 4

PCs. This is especially so in the cases of T4 Oster, T11 Oster, T18 Vaster and
T25 Vaster.

Also, it was observed that PCA with 5 PCsis as robust as the PCA model with 4 PCs
when a number of thermocouple signals are masked out. Hence, in order to improve
predictability and maintain the level of robustness when several thermocouple
measurements are inferred (masked) rather than measured it has been decided to
choose the PCA model with 5 principal components.

5.3.4 Development of Condition Monitor 3000

Variables that are considered by this condition monitor are 10 thermocouple
measurements that are located in the soaking zones of the reheating furnace. This set
of sgnals is highly correlated as reflected in Figure 8. In this display it is observed
that taking only the first two principal components contributes 98.62% to the total
variation of the training data.
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Figure 8

Hence, this PCA model contains 2 principal components. Validation, using the data
from June 2003 has generated the following results for the prediction errors.

Signal ID Mean | Deviation| Maximum [ Minimum
T5_Oster 0.79 2.26 12.73 -12.65
T6_Oster -0.82 331 17.61 -12.4

T7_Oster | -16.54 6.22 17.97 -36.14
T8_Oster 4.77 5.43 36.53 -19.55
T14 Oster -4.85 3.65 8.51 -29.71
T19 Vaster 5.81 241 15.33 -6.93
T20_Vaster| -0.03 2.48 19.34 -10.3
T21 Vaster| 9.76 4.07 29.7 -24.8
T22_Vaster| 3.34 6.87 28.2 -32.16
T28 Vaster| -4.09 3.82 25.86 -45.73

Table4

It is interesting to note that there is a relatively large mean value in the prediction
error of T7 Oster (situated at the bottom of the soaking zones). This factor is
explained by the trends of Figure 9 (for T7 _Oger), where the coloured line
corresponds to the measured signal and the brown line corresponds to the respective

PCA prediction signal.
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Note that the blue line is consistently below brown line indicating that this
thermocouple measurement may suffer from systematic error.

5.4 Improving the Robustness of Condition Monitors

The key chalenge in this particular application is the lack of the strong cross
correlation between various thermocouple measurement signals. As a result,
prediction errors of the PCA- based statistical model that are routinely encountered
are of comparable size to the measurement errors which have consequential impact on
the key business drivers, such as the energy consumption (in the case of the negative
prediction error) as well as the product quality (in the case of the positive prediction
error).

There are many different methods of increasing or decreasing the sensitivity of
condition monitors. One method is to reduce the number of false alarms by limiting
attention to those events that contain frequency components in a specific range. For
example, if the event that is to be detected is the slow drift, representing a general
low frequency signal, then by low passfiltering information such as prediction error
it is possible to solely focus on all those events that belong to this very specific band
of frequencies. In that case sudden and short-lived disturbances, observed in
prediction error trends, are ignored during the filtering process while the slow
disturbances are emphasi sed.

In this particular case there is no specific and unique spectrum of events that can be
detected. In many cases aslowly drifting thermocouple is not easily detectable and yet
may have long- term impact on production. On the other hand, sudden and rapid
failure of a thermocouple causes complete loss of information that may play a crucial
role in the overall automation scheme. Hence, unsurprisingly, there has to be a
compromise between emphasising slow drifts (low- frequency) and sudden and rapid
changes (high-frequency). In this application such compromise is quantified by means
of afirst- order filter time constant. General formulation of a ssmple delay-free and
unity gain first- order filter is given in the Laplace Domain as follows:

1

G(s) =
(s) Ts+1

(15)

where T represents time constant, expressed in seconds, while < is a complex
Laplace variable.

The impact that a filter time constant has on prediction errors is discussed next.

The larger the time constant the greater is the emphasis on the low- frequency
components of a filtered signal, as are seen to predominate in Figure 11. On the other
hand, reducing the time constant does not shift emphasis from the low to high
frequency bard. Instead, it increases the bandwidth of a filter and allows more and
more of high- frequency components to be present, alongside low frequency
components, in the output (filtered) signal.
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If the sole objective of the filter is to reduce variation of the prediction error then the
time constant should be very large, eliminating majority of the medium and high
frequency content in the filtered signal, as observed in Figure 11. However, in such
case response to a sudden change in prediction error is likely to take a very long time,
as it is observed in Figure 11, where the step —response of a filter is plotted as a
function of time.

1 1 1
s+1 10s+1 100s+1

\ _ Step nA.mse | /

Aripktude

Tine (20c)

Figure 11

Next, the statistical information concerning the filtered prediction errors, evaluated
over the validating data set (June 2003) for all three monitors is displayed. In order to
demonstrate the effect that the choice of time constant has on a size of filtered
prediction error three different cases were considered.

First of all Monitor 1000 is considered.

Time Constant = 1 minute

Signal ID Mean | Deviation|Maximum| Minimum

T1_Oster 0.12 0.91 3.69 -4.55

T10_Oster 0.08 0.28 2.83 -1.74

T15 Vaster| -0.12 0.92 4.6 -3.73

T24 Vaster| -0.08 0.28 1.73 -2.82
Table5
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Time Constant = 10 minutes

Signal ID Mean | Deviation|Maximum| Minimum
T1_Oster 0.12 0.74 2.96 -3.31
T10_Oster 0.08 0.16 0.89 -0.7
T15 Vaster| -0.12 0.75 3.35 -2.99
T24_Vaster| -0.08 0.16 0.69 -0.89
Table6
Time Constant = 1 hour
Signal ID Mean | Deviation|Maximum| Minimum
T1 Oster 0.12 0.5 1.96 -1.31
T10_Oster 0.08 0.11 0.45 -0.4
T15 Vaster| -0.12 0.51 1.33 -1.98
T24 Vaster| -0.08 0.11 0.4 -0.45
Table7

Next, the results for the Condition Monitor 2000 are presented.

Time Constant = 1 minute

Signal ID Mean | Deviation|Maximum | Minimum
T2_Oster 2.01 14.15 89.1 -74.53
T3 _Oster -1.72 3.46 12.77 -21.02
T4 Oster -1.84 5.73 19.19 -27.83
T11 Oster| -1.51 5.57 33.04 -29.89
T13 Oster | -0.46 5.01 24.32 -40.14
T16 Vaster| -2.06 12.7 64.17 -87.89
T17 Vaster| 2.09 3.72 23.26 -13.64
T18 Vaster| 0.48 6.5 40.87 -34.8
T25 Vaster 4.1 8.63 42.62 -21.63
T27 Vaster| 0.74 6.27 50.8 -30.64
Table 8

Time Constant = 10 minutes

Signal ID Mean | Deviation|Maximum | Minimum
T2_Oster 2.01 12.51 80.32 -62.96
T3_Oster -1.72 3.03 9.91 -18.25
T4 _Oster -1.84 5.35 17.37 -25.88
T11 Oster| -1.51 4.94 24.95 -21.48
T13_Oster | -0.46 4.36 19.87 -35.11
T16_Vaster| -2.06 11.24 54.02 -80.46
T17 Vaster| 2.09 3.26 19.55 -11.7
T18 Vaster| 0.48 5.72 25.62 -20.05
T25_Vaster 4.1 7.85 38.77 -15.14
T27 Vaster| 0.73 5.51 44.93 -25.04
Table9
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Time Constant = 1 hour

Signal ID Mean | Deviation|Maximum| Minimum
T2_Oster 1.99 8.49 38.67 -33.74
T3_Oster -1.72 2.13 4.15 -10.09
T4_Oster -1.83 4.35 9.97 -18.7

T11 Oster -1.51 3.6 13.32 -14.13
T13_ Oster -0.46 3 8.18 -16.9
T16 Vaster| -2.05 7.51 26.12 -39.44
T17 Vaster| 2.09 2.28 11.19 -4.21
T18 Vaster| 0.47 4.31 21.65 -9.31
T25 Vaster 4.09 6.16 26.78 -11.03
T27 Vaster| 0.73 3.94 22.87 -10.19

Table 10

Finally, the results for the Condition Monitor 3000 are displayed below.

Time Constant = 1 minute

Signal ID Mean | Deviation|Maximum | Minimum
T5_Oster 0.79 2.16 12.14 -12.13
T6_Oster -0.82 3.25 17.06 -11.6
T7_Oster | -16.54 5.96 16.46 -34.65
T8_Oster 4.77 5.12 35.2 -18
T14 Oster | -4.85 3.51 8.18 -28.4
T19_Vaster 5.8 2.35 14.74 -6.66
T20_Vaster| -0.03 2.38 16.73 -10.15
T21 Vaster| 9.76 3.92 27.86 -18.19
T22 Vaster| 3.34 6.67 26.78 -31.08
T28 Vaster| -4.09 3.59 23.7 -41.29
Table 11

Time Constant = 10 minutes

Signal ID Mean | Deviation|Maximum | Minimum
T5_Oster 0.79 1.69 5.87 -9.12
T6_Oster -0.82 2.75 12.19 -9.13
T7_Oster | -16.54 5.06 11.2 -29.06
T8_Oster 4.77 3.79 19.07 -13.74
T14 Oster | -4.85 2.711 5.31 -17.66
T19 Vaster| 5.81 2.02 11.85 -5.25
T20_Vaster| -0.03 1.9 7.19 -7.83
T21 Vaster| 9.75 3.19 21.14 -8.2
T22 Vaster| 3.34 5.41 19.09 -22.56
T28 Vaster| -4.09 2.76 16.28 -19
Table 12
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Time Constant = 1 hour

Signal ID Mean | Deviation|Maximum | Minimum
T5_Oster 0.79 121 4.84 -5.05
T6_Oster -0.82 2.12 7.69 -7.29
T7_Oster -16.5 4.31 6.23 -24.6
T8_Oster 4.75 2.65 12.98 -6.92
T14 Oster | -4.85 1.83 0.34 -11.23
T19 Vaster 5.8 1.63 11.09 -2.69
T20_Vaster| -0.03 1.35 4.46 -4.11
T21 Vaster| 9.73 24 17 -2.08
T22_Vaster| 3.35 3.97 13.22 -15.88
T28 Vaster| -4.09 1.9 8.73 -8.87
Table 13

Note that as the value of the time constant increases, the standard deviation as well as
maximum and minimum values of the prediction errors decrease. However, the mean
value of the prediction error remains aimost unchanged. This is due to the fact that
low- frequency components of the prediction error, which are main contributors to the
mean value, are unaffected by low- pass filtering.

5.5 Online Implementation of the Ther mocouple Validation Scheme

5.5.1 Introduction

In order to fully exploit the benefits of thermocouple validation scheme that has been
developed for this project, the MonitorMV Online system has been employed to
implement the condition monitoring application in real- time on the reheating furrace
at the AvestaPolarit AB site in Avesta, Sweden.

Presently, the MonitorMV Online system application is installed on a computer
AvestaPolarit AB site that is remote from the furnace control room However, it is
expected, in the future, to be installed in the control room of the reheating furnace as a
valuable tool in addressing the reliability of the instrumentation equipment.

5.5.2 Layout of the MonitorMV Picture

A purpose MonitorMV Picture has been designed in order to properly present the
results of the condition monitoring scheme.

The Primary screen that should be observed by operator personnel is available as
Picture 1 in the MonitorMV Online system application. The background image of this
picture is the physical diagram of the furnace. Additionally, filtered prediction errors
of the thermocouples are placed at the relevant locations, as seen in Figure 12.
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Furnace Diagram

Figure 12

Colouring of these signals is used to indicate the status of a particular thermocouple.
In the case where the relevant condition monitor is not active the corresponding
filtered prediction errors are coloured blue. If the monitor is active and the alert level
is not violated then a filtered prediction error is coloured green. Findly, if the aert
level is violated then a corresponding filtered prediction error is coloured red.
Displayed values represent the size of afiltered prediction error.

Hence, this picture represents the ‘home page’ of the application, to provide a clear
display of the size and location of the malfunction.

5.5.3 Assignment of Alarm Levels and Filter Time Constants

The Alarm system, available within the MonitorMV Online system, has been applied
to the filtered prediction errors of the PCA- based condition monitors. At the present,
alarm levels have been set according to the maximum/minimum values of the filtered
prediction errors, evaluated over the validating data set. In thisway, it is believed that
the number of false darms would be small, to provide satisfactory confidence of the
operation personnel in the robustness of the condition monitoring scheme. Depending
on the future performance of the overall scheme these limits may be reduced from
these somewhat conservative levels in order to increase the sensitivity of the condition
monitors.

It was decided that the filter time constant be set, in the first instance, to 10 minutes
for all of the signals. Such choice is seen as the compromise between the speed of the
response to sudden and rapid changes in prediction errors and the reduction of
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sengitivity to a short- lived rapid disturbances that would aherwise unnecessarily
trigger alarm.

Limits imposed on filtered prediction errors are given in the Table 15.

Signal ID Positive Alert Level Negative Alert Level
T1_Oster 5 -5
T2_Oster 85 -85
T3 Oster 20 -20
T4_Oster 30 -30
T5_Oster 10 -10
T6_Oster 15 -15
T7_Oster 30 -30
T8_Oster 20 -20
T10_Oster 5 -5
T11 Oster 25 -25
T13_Oster 35 -35
T14 Oster 20 -20
T15_Vaster 5 -5
T16_Vaster 80 -80
T17_Vaster 20 -20
T18 Vaster 30 -30
T19 Vaster 15 -15
T20_Vaster 10 -10
T21 Vaster 25 -25
T22_Vaster 25 -25
T24 Vaster 5 -5
T25 Vaster 40 -40
T27_Vaster 45 -45
T28_ Vaster 20 -20
Table 14
5.6 Case Study

5.6.1 Introduction

This section demonstrates the capability of the MonitorMV system in detecting failure
of the thermocouples. In particular, one thermocouple was reported to have failed
during 14™ of February 2003. However, this mafunction was not observed by
operators and was spotted by a process engineer on the 16" February. Note that the
system discussed in this report is actually implemented on a different reheating
furnace at AvestaPolarit. Nevertheless, this case study has been included in the report
as a demonstration of the system capability to detect subtle and non trivia
abnormalities of the instrumentation equipment.

5.6.2 Process Data

Process data that has been utilised for the development of the condition monitoring
scheme was collected during January 2003. Portions of the data for which the
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measurement values were invalid and periods during which the furnace maintenance
was performed were not included. Overall, 22,961 data points have been used for the
training purposes.

Variables that were considered in this development are al of the thermocouple
temperature measurements inside reheating furnace B (27 in total).

5.6.3 Development of a Condition Monitor

12 highly cross-correlated Measured signals have been included in the condition
monitor. Following Principal Component Analysis 4 principal comporents have been
chosen for the PCA model, contributing 97.6% to the total variance of the training
data set, as seen Figure 13.

Select Number of Scores i‘

.

Contribution = 0.89761151 from 4 iterms

Apply| Cancel] PreviousTrend] Ne}dTrendJ

Amplitude = 017316914 from item 4

Figure 13

5.6.4 Validation of the Statistical Model

Data from the period between the I February and 12" February 2003 was used to
assess the validity of the developed PCA model.

Inspection of the squared prediction error (SPE), displayed as the top trend in Figure
14, shows there to be visible periods during which SPE does have excessive values,
i.e. it is coloured red, indicating that the model is not fully able to generalise to the
situations, which were not present in its training data set. Note that SPE represents the
sum of the sguares of al the prediction errors associated with each variable
considered by a corresponding PCA monitor.

However, it can be argued that the periods of excursion are not typically long enough,
especially when compared with length of the periods during which SPE remains at the
low level.

Nevertheless, attention should be paid towards developing more accurate models so as
to reduce the occurrence of false alarms. Also, development of accurate models would
increase sengitivity to the abnormalities and allow validity to be extended over longer
periods of time, i.e. reduce the number of re- modelling exercises.
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Figure 14

5.6.5 Data Analysis During the 13" of February 2003

In this section the analysis of data during 13" of February is reported. Results are
presented in terms of the standard charty trends used in MonitorMV for fault
detection purposes. These are the SPE plot, explained in the previous section,
individual prediction trends and the Contribution chart. The Contribution chart
represents scaled prediction errors, i.e. scaled with respect to the training data, of the
individual measured signals displayed graphically as a histogram.

Figure 15 shows the associated SPE trend and it is apparent that while the trend of
SPE is not consistently high there are a number of relatively long excursions during
the 13" of February. Also, the duration of these individual excursions increases
towards the end of the day.

Hence there is an indication through the SPE chart that the inter- variable relationship
between thermocouples has changed to some extent. This could generaly be
attributed to a number of possible causes. One possible cause is that the underlying
thermal dynamics of the reheating furnace have changed (due to a premeditated effort
to improve performance or to afault that has occurred inside the process). Another
possible cause is that one of the measurements is not valid, i.e. that the sensor
responsible for measuring a particular signal is malfunctioning. Both of these events
are consequential in terms of overall control system performance and should be
detected as early as possible using a condition monitoring scheme such as the one
implemented in MonitorMV.

Page 28 of 74



Design 1 - menifoety v A0 - Soreen L - PEL _I— _II:I EI
Ble:, Tonls: Juesicelion Dizwlpm. Daneel delp,
DaiaProtessing | Geore Modaiing | POF Classficaion | Chare... | Fangald Ofsslis Wihis |
Dptinns... | Topgietest | GG Grore | Srores | Zoom in | Zoom Out | <Pan | Pane | Re== |
Uk 1AFeD0E 00oce el bic i) 3 Errod; Wonnor 10004
o0 e PDOSIE | SPESaumecP s mEre | 190428
|L'| " |' | '1 'l I f
" Y WL A
_r'J Ll" W"‘J‘«-M'\" l'-.J’ Il'»‘ Wl . L""rL EFrirl]
10l Fe BB e o Prbmbtts Frob % L0 (1] | “'| TR i r::l’“'fl"‘: %"‘fc"’* jiLL
[7 TREAL| s ool |l ]
V f 1, WA Al
i 'I}zi! | ? | 1,7-3 .
L | I | |
1 ] ll ||.|[ Vi I D4 B
0 POF S 2
1
n. ;
15Fab0r 00 0irir:ES A#Fabils Do =
Figure 15

Inspection of the Error Contribution bar chart shows that al of the variables remain
for most of the time within 5 standard deviations of the training data error. However,
it is observed that from 14:00 (approximately) the signal associated with the failed
thermocoupl e temperature measurement (with a MonitorMV’s signal 1D of 2034.ME)
has a largest although not distinguishable error contribution as seen in Figure 16. Note
that MonitorMV signa ID is presented on most of the trends instead of the signal tag
name Temp_FOCS 9. However, in all explanations in this report, the signal tag name

is used instead of the MonitorMV signal ID number.
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Figure 16

The failed thermocouple temperature measurement crosses the 5 standard deviations
threshold in the error contribution bar chart at 22:30, as seen in Figure 17. Since the
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other error contributions are not as significant, the error contribution bar chart does
provide a clear indication that this particular thermocouple may be faulty.
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Figure 17

The actual PCA prediction error for Temp FOCS 9 at this point is equal to —60
degrees C. In other words, the prediction trend indicates that the measurement of
Temp FOCS 9 is 60 degrees lower than expected, as seen in Figure 18, where the
blue line represents the measurement while the brown line represents the PCA
prediction of Temp FOCS 9.
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Figure 18

Following 13" February, the SPE is consistently high, indicating an underlying
problem. Out of all the variables, Temp FOCS 9 is the most likely source of the
problem as its prediction error is consistently below —25 degrees C. In fact the mean
of the prediction error for Temp _FOCS 9 over the last 2 hours of 13" of February is
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equal to -43.7 degrees C. Note that in normal circumstances the mean of any
prediction error should be equal to 0.

Hence, there is a very dtrong indication that thermocouple associated with
Temp_ FOCS 9 signal has failed during the later part of the 13" of February.

5.6.6 Data Analysis During the 14" of February 2003

The SPE plot of Figure 19 shows that the deterioration of the thermocouple
measurement is exposed by a continuous increase in the overal size of prediction
error during 14" February.
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Figure 19

Note that, during the first 4 hours of the day, the mean of the prediction error for
Temp_FOCS 9isequal to—47.12 degrees C. However, during the next 6 hours (from
4:00 until 10:00) the mean of the prediction error is equal to —78.7 degrees C,
indicating a persistent and increasing problem with the associated thermocouple.

Deterioration of the faulty thermocouple can be observed in Figure 20 where the PCA
prediction of Temp FOCS 9 (brown line) is plotted aongside the Temp_ FOCS 9
signa itsdf (blue line).
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Figure 20

Notice that the vertical distance between brown and blue line, indicating the
prediction error, is increasing with time. This is more clearly observed in Figure 21
where the actual prediction error is plotted. Notice the consistent drift of prediction
error in the negative direction, which confirms the findings from other monitoring
charts that the fault has indeed occurred.

Figure 21

From 2:30 (approximately) onwards Temp FOCS 9 is clearly and consistently the
highest prediction error contributor as seen in Figure 22.
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Figure 22

5.6.7 Conclusion

In conclusion, this case study demonstrates that MonitorMV has indicated the
existence of a problem as early as the later part of the 13™" of February and aso clearly
identified the failing thermocouple in the early hours of the 14" of February.

Note that these observations have been made using standard techniques available
within MonitorMV (SPE chart, prediction trends and contribution bar chart)
demonstrating its fault detection capabilities.

However, further improvemerts in terms of the fault sensitivity as well as the
robustness of the condition monitor could be achieved by filtering prediction errors
and by means of a careful design of a Threshold Detector system available within the
MonitorMV Online system, as described in earlier sections of this chapter.

5.7 Impact of the Faulty Thermocouples on the Energy Consumption

As is dready stated in section 5.1, in the case where reheating furnace thermocouples
are having negative bias, i.e. the measured value is lower than the actual temperature,
the result is over- heating of the slabs. In such case energy consumption of the overal
reheating furnace will increase.

In this section an estimate of the excess energy consumption is made for the reheating
furnace U302 at the SSAB site in Borlange, Sweden, for which the basic diagram and
specifications are given in Figure 4.

The calculations presented in this section develop relationships between increased
discharge temperature of the slabs and the energy consumption.

Firstly, consider the following equation for the calculation of the heat.

Page 33 of 74



Q =mxc xDT (16)

where Q is the amount of heat required to raise the temperature by DT degrees
Kelvin of the body with mass equal to m kilograms, made of material with a specific
heat capacity given by c . In the case of stedl slabs, ¢, for over 1100°C isequal to

628 JKgK.

So, in order to raise temperature of the 1 tonne of stedl dab by 1'C, over its nomina
temperature, it is required to use Q =10°kg>628J / kgK % C = 628kJ = 0.174kWh.

Since the heat efficiency of U302 is approximately equal to 58%, it means that the
heat required to be delivered by the furnace burners system is equal to 0.3kWh for
each tonne of steel dab to be overheated by 1 degree centigrade.

Hence, if the dabs are, for example, overheated by 50 degrees centigrade and such
behaviour persists for a day in a furnace with an annual throughput of 1,300,000
tonnes, then the amount of excessive energy consumption in that single day is equal to
53.42MWh. If such problem persisted for a year then a total amount of excessive
energy consumption would reach 19.5GWh.

5.8 Summary

The prerequisite for satisfactory control system performance is reliable availability of
feedback measurements. In fact, a control system can only be as reliable as its
feedback measurement equipment. Also, general sensor equipment is susceptible to
long-term drifts and sudden failures. As aresult, key business drivers, such as running
cost, productivity and product quality, can be adversely affected, compromising the
economic viability of the entire processing plant. Therefore, the improvement in
feedback measurement reliability has a direct and positive impact on key business
driversin any manufacturing industry.

The Fuel Optimisation Control System (FOCS) scheme, employed in the reheating
furnaces of the hot-strip rolling mills, relies heavily on accurate temperature
measurements inside different furnace zones. These thermocouple- measured
temperatures are used as measurements in local PID- based control schemes (one
controller for each furnace zone) as well as for the initia conditions in dab
temperature calculations.

The impact of the faulty or erroneous temperature measurements in reheating furnace
is twofold. In the case where the measured value is below the actual temperature,
excessive fud is used in the furnace burners. This in turn increases the energy
consumption, which is probably the main business driver for this process. Also, if the
measured value is above the actua temperature then the product quality may be
degraded. Hence, in either case an important business driver is adversely affected by
the fallure of instrumentation equipment to provide accurate and reliable
measurement.

The sub- project that is described in this chapter is concerned with a development of a
validating mechanism for the thermocouples used in reheating furnaces. The
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approach, taken in this project, is based on the principle of redundancy through the
utilisation of the Principa Component Analysis method, available within the
MonitorMV software system. The presence of strong cross-correlation between
different thermocouple measurements is exploited for the detection of faulty sensors
and for the subsequent estimation of the true value of the associated process variable.
The developed validation scheme is presently under trial on one of the reheating
furnaces at the AvestaPolarit site in Avesta, Sweden.

Multivariate statistical process cortrol is a data driven technology. Therefore, the data
that is used for the development of statistical models has a direct impact on the
performance of the resulting condition monitor. Ideally, training data sets should be
chosen to correspond to those periods of time that follow immediately after re-
calibration takes place. In this way, it is ensured that a training data set does not
contain variables with systematic error.

Due to the character of operation and the geometric shape of the reheating furnace,
thermocouple measurements from different zones have been found to be not highly
correlated. For example, temperature measurements from the preheating zones are
amost completely uncorrelated with temperature measurements from the soaking
ZOnes.

In order to improve accuracy of the fault detection/diagnosis scheme it was decided to
design three condition monitors that would focus on different sections of the reheating
furnace. The criterion for grouping of thermocouples for each condition monitor has
been taken to be the level of cross-correlation between these measurements as well as
their mutual closeness in physical sense.

The key challenge in this particular application has been the lack of the strong cross
correlation between various thermocouple measurement signals. As a result,
prediction errors of the PCA- based statistical model that are routinely encountered
are of comparable size to the measurement errors which have consequential impact on
the key business drivers, such as the energy consumption (in the case of the negative
prediction error) as well as the product quality (in the case of the positive prediction
error). Amongst many different methods of reducing sensitivity and, thereby
increasing the robustness of the monitoring scheme it has been decided in this
particular project to reduce the number of false alarms by limiting attention to those
events that contain frequency components in a specific range. For example, if the
event that is to be detected is the slow drift, representing a general low frequency
signal, then by low- pass filtering the information such as prediction error it is
possible to solely focus on all those events that belong to this very specific band of
frequencies. In that case sudden and short-lived disturbances, observed in prediction
error trends, are ignored during the filtering process while the slow disturbances are
emphasised. Such focus on particular features in the data has been achieved by low
pass filtering the prediction errors of the PCA models. The tuning parameter has been
chosen to be the time constant of these filters.

In order to fully exploit benefits of thermocouple validation scheme that has been
developed, the MonitorMV Online system has been employed to implement this
condition monitoring application in rea- time on the reheating furnace A at the
AvestaPolarit AB site.
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The presented case study demonstrates the capability of the MonitorMV system to
detect failure of thermocouples used in rehesating furnaces of the hot- strip rolling
mill. The situation that is considered took place at the AvestaPolarit plant. One
thermocouple was reported to have failed during 14™ February 2003. It has been
demonstrated that MonitorMV indicated the existence of a problem as early as the
|latter part of 13" February and also clearly identified the failing thermocouple in the
early hours of 14™ February. Note that these observations have been made using
standard techniques available within MonitorMV (QC charts, prediction trends and
contribution bar chart) demonstrating its fault detection capabilities.

Future developments should focus on placing the Online application into the control
room of the reheating furnace A, thereby providing accurate and reliable validation of
thermocouple measurements that are continuously available to the process operators
and the process control systems. Also, a similar scheme should be employed for the
reheating furnace B, for which the capability of MonitorMV system to detect faulty
thermocouple has been demonstrated in the case study, results of which are given in
section 5.6. Furthermore, the concepts that are employed in validation of
thermocouples could be employed in the future for other instrumentation equipment
that exhibits high levels of cross- correlation. . This would ensure that critical sensors
are backed up and monitored automatically, thereby shielding the control system from
misinformation and potentially costly maloperation.
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6. Sub-project 2: Development of a NOx Estimation Scheme using
Partial Least Squares

6.1 Introduction

Nitrogen oxides (NOx) are generated from the combustion process directly by the
thermal oxidation of gaseous nitrogen by oxygen (thermal NOXx) or by combination of
nitrogen compounds in the fuel with oxygen. In the case of reheating furnaces, NOX is
produced as aresult of burning fuel while reheating steel slabs.

The need to protect the environment from combustion generated emissions, such as
carbon dioxide (CO2) and nitrogen oxides (NOx) has led in recent years to
considerable demand for improved combustion system design and operation. In terms
of the improved combustion system design, there is a number of new burner
technologies that aim to minimise NOx emissions, such as air staging or two- stage
combustion and pressure atomised oil burners technology. In terms of the improved
combustion system operation, advanced process control technology is expected to
shed light into methods of reducing NOx while avoiding costly modifications to the
actual process equipment and/ or compromise in process performance.

The most important business drivers in economic considerations of the reheating
furnace are minimisation of energy consumption and maintenance of high throughput,
i.e. extraction rate of the steel slabs. However, it is evident that, with increasingly
stringent environmental regulations and heavy penalties for non-conformance,
especially since the ratification of Kyoto agreement, furnace emissions are becoming
a significant cost driver and may become the most important constraint in coming
years. Such environmental considerations are forcing process plants to measure
emissions and investigate methods for their cost- effective reduction.

In order to provide continuous measurements of NOx emissions, expensive analysers
have to be installed and maintained. On the other hand, software based inference
engines, known as ‘soft sensors, may well provide a viable and economic alternative
to costly hardware- based analysers. Furthermore, if a developed inference engine is
given in appropriate form, i.e. cause- effect structure with relatively simple
parameterisation, then a by- product of the soft sensor development is a delivery of
prediction model that can be readily utilised in improved closed- loop control of NOx
emissions.

Hence, the development of an accurate prediction model for NOx emission is seen as
a crucial step in pursuing development of a soft sensor application and/ or
implementation of adequate control scheme. Note that such a control scheme can be
delivered as either automatic regulation of NOx emissions, i.e. implemented in
closed- loop form, or as a nont invasive advisory application, for which the loop is
broken at the controller output.

Additionally, sudden and rapid change in terms of NOx emissions that is not
accounted for by the developed prediction model may be a symptom of an operational
problem of the reheating furnace. Such issue was not covered in this project.
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However, development of prediction model clearly benefits attempt to develop the
condition monitoring scheme of the reheating furnace.

During this particular project, the NOx estimation scheme has been developed, by
using the MonitorMV package, for a reheating furnace U302 in the hot- strip rolling
mill at the Swedish Steel AB (SSAB) site in Borlange, Sweden. Specifications and the
diagram of this reheating furnace are presented in Figure 4. The Project has been
carried out in collaboration with process control engineers of SSAB and APC Ltd.

6.2 Control of NOx Emissions

Reduction of NOx may be achieved by either primary or secondary means. Primary
reduction of the generated NOXx takes place in the furnace itself, usually by improved
control and/ or modification of the combustion process. Secondary reduction is
performed by removing the NOx from the exhaust after leaving the furnace.
Secondary reduction can be done by means of ammonia injection, either non-catalytic
or catalytic, or by means of flue gas recirculation. Generally, the cost of secondary
reduction will depend on the amount of NOx to be removed, therefore it is desirable
to have the lowest initia concentration possible to minimise operating costs. Hence
‘Low NOx’ burners and optimal NOx control are seen as primary means and are
desirable even if secondary reduction must be used.

Low NOx burners are generally designed to control fuel and air mixing at each burner
in order to create larger and more branched flames. Peak temperature is thereby
reduced, and results in less NOx formation. Additional benefit of this type of burners
is that the improved flame structure aso reduces the amount of oxygen available in
the hottest part of the flame, thus improving burner efficiency. Note that ‘low NOx’
burners can be combined with other primary measures, such as optimal control, in
order to minimise excessive NOx emissions and the cost of the secondary NOx
reduction methods.

Control of NOx emissions can be achieved by modifying the operating conditions of
the burners and the entire reheating furnace. Implementation would, in principle, take
the form of an automatic feedback- based control scheme. In this case the model
would need to be developed that relates NOx emissions to its main causes, such as
burners' fuel and air flowrates, as well as the main business drivers of the reheating
furnace, notably productivity and the energy consumption. Then, the control objective
could be stated in mathematical optimisation framework as an attempt to minimise
NOx emissions while maintaining high productivity and minimising energy
consumption.

Hence, the first step in the development of an optimisation scheme, implemented as
either a closed- loop or advisory/open loop solution, is the development of an
accurate cause- effect mode that relates important issues within a process. In this
case, it is the model between the key NOx producing cause variables and the NOx
emissions.
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6.3 NOx Estimation as a Soft Sensor Application

Soft sensor is a common name for a software-based inference of difficult-to-measure
process or product quality variables. For example, some attributes of manufactured
products such as polymer melt index, moisture content of food, and resistance to
therma flow in insulation can only be measured by laboratory analysis. With soft
sensors these measurements can be made continuous and available on the
manufacturing line. Hence, the control of product quality can be increased
significantly without large capital cost of installing expensive analysers. Inferential
sensors can also be used in conjunction with analysers for redundancy purposes. More
specificaly, if the prediction model employed by a soft sensor is adequately accurate
it can be used to detect instrument failure or systematic error and, therefore, highlight
the need for instrument repair/ recalibration. Furthermore, during the maintenance of
the analyser, value of the important quality variable is continuously made available
through the inferential capability of the prediction model. However, while soft
sensors have been applied in the form of so- called predictive emission monitors
(PEMSs) in the utility boilers and crude oil furnaces, to name but a few, there is very
little evidence of their application in the reheating furnaces of a hot strip rolling mill.

6.4 Choosing Cause Variables

In order to develop accurate prediction model important decision in the early stages of
model design is the selection of a set of cause (input) variables. Such decision is made
by employing process knowledge as well as some statistical analysis methods, notably
correlation analysis. In this particular case, process engineers from SSAB and APC
Ltd. have provided extensive process knowledge that greatly helped decide on which
variables are to be considered as cause signals in the corresponding prediction model.

In the initial development, correlation analysis was hampered by the lack of process
excitation and irregular measurements of NOx emissions. Hence, the process
knowledge provided a crucial insight into the underlying cause- effect structure of the
model to be developed. In particular, impact on the NOx emissions by the variables
that are related to the first two zones (preheating zones) of the furnace was
highlighted by APC Ltd. However, some additional process variables were also found
to have significant impact on NOx emissions, namely flow rate of combustion air in
recuperator, total flow rate of oil into the burners as well as the total flow rate of the
atomising steam. This last variable is found to be negatively correlated with NOx
emissions. In other words, increase in the total flow rate of atomising steam into the
burners is found to reduce NOx emissions. Hence, the total flow rate of atomising
steam could be seen as a crucia cause variable in any attempt to minimise NOXx
emissions.

The complete list of cause variables that were included in the model, together with
their brief description, are given in Table 15. Note that the most important cause
variables from these two zones are the flow rates of air and fuel into the burners as
well as the zone temperatures.
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Signd ID Description

9.ME Temperature in the south of zone 1 used by PID regulator
10.ME Temperature in the north of zone 1 used by PID regulator
11.ME Temperature in the south of zone 1 used by FOCS control system
12.ME Temperature in the north of zone 1 used by FOCS control system
13.ME Temperature in the south of zone 2 used by PID regulator
14 ME Temperature in the north of zone 2 used by PID regulator
15.ME Temperature in the south of zone 2 used by FOCS control system
16.ME Temperature in the north of zone 2 used by FOCS control system
63.ME Combustion air temperatuire for zone 1

64.ME Combustion air temperatuire for zone 2

73.ME Flowrate of combustion air to the burnersin zone 1
74AME Flowrate of ail to the burnersin zone 1

75.ME Flowrate of combustion air to the burnersin zone 2
76.ME Flowrate of oil to the burnersin zone 2

96.ME Furnace pressure

97.ME Flowrate of combustion air in the south sector of the furnace
98.ME Flowrate of combustion air in the north sector of the furnace
99.ME Total flowrate of oil
100.ME Total flowrate of atomising steam
101.ME Pressure of the atomising steam in zone 1
102.ME Pressure of the atomising steam in zone 2
121.ME Walking beam cover ratio for zones 1 and 2
129.ME | Average distance of the dabs to the furnace wall in the south sectors of zones 1 and 2
137.ME | Average distance of the dabs to the furnace wall in the north sectors of zones 1 and 2
146 ME Air/Fud ratio for zone 1
147.ME Air/Fudl ratio for zone 2
148 ME Status of extraction door (open=1, closed=0)

Tablel5

6.5 Training Data

Data collection is an essential part of the overall prediction model development since
quality data are the only base for building a quality prediction model. In particular, if
a prediction model isto be of dynamic form, asit is the case with NOx predictor, then
a training data set has to be ‘sufficiently excited’ in order to revea information
concerning dynamic relationships between cause and effect variables.

In order to sufficiently excite the process it has been decided to perform numerous
step tests on some key variables that are believed to be mgjor contributors to the NOx
emissions. These have been decided to be the flow rates of air and fuel into the
burners of the first two zones of the furnace.

Fud flow rates have been varied between 90% and 70% of the burner capacity while
the air flow rates have been manipulated by changing the air to fuel ratios. During the
step tests, automatic temperature control systems (PID controllers) for the first two
zones of the reheating furnace were set to manual status and their outputs, i.e. fuel and
air flow rates, were directly manipulated. Sample displays of these variables during
step- tests are given in Figures 23 and 24.

Page 40 of 74




Design 1 - monitoryy vl.4.1 - Soreen 2 - PEL i frE EI

File Tools Specifcation  Displeys  Cancel  Help

Dala Frocessing | Geore Modeling | POF Classifealion | chats,, | Range s 42361d OMaelds Widhos |

options | Toggie te | Trénd 100 | Trend 102 | Zoorn | Zoom out | <Pan | Pane | Rese |
Cur=or OFNov0d 15020702 A Traarig_Lels MOAT
frave  pomasa LoFTIL Pl mat_:u'ﬂ N-'Iﬁ.r ]'».J 426152
Vi

327
Fawt  pissta |71 Fiow ol zon i [ I| J“* . | i1 iul 7516

“r | [ Y I

| "f" .I
| | J LJ |_, 1 4290381
s wE SRR | T Flxi u.?l:jw _xr.-'G rmf..a J}'l._ she ,f S = [ '| r“lfu 43180 R

; \/ T W v
e ].zssuaq
fFerE Moy TEFTHIFlow ol zond Uh | ELLER
[ 23m .72
196 WE [l ¥ nF 11 aurE L= st Tene 1 v Il [l Mo n -

'l ..d'l'.. l et | Y ---".. ||v||r it |.*' ||I"'
& 1 | U e
47 WE [I1. 3 Mmmrfmmnrﬁ?xwwwwﬂmﬂwmnm
LT
3 676, = 53 335h.
07McH02 15 02 07.02 D7 HCH02 15 235416
Figure 23

Deesign 1 - monitorsy’ vl.4.1 - Soreen 2 - PEL —dl= EI

File Tools Specifcation  Disples  Cancel  Help

Diala Pracessing | Geome Mogeling | POF Classifcation | chans, | Range3 423610 Offaelns idhos |

options | Toggie tea | Trend 100 | Trend 102 | Zoorin | Zoom aut | «Pan | Pane | Rese |

Curzor OTMov0d 23275422 11 TrmmhmT
e [EaTS jf:_lnjmw o:cmn_m-n M a1615.2
1702
T ”_vf. aFlow ,_ﬁ.,-n -,4 M1 —r— 3155 el
[ | ' |
|| I\-m A | '-_l Ll Yasas
5 VE  [ATEGS A—‘"‘I Floviv_comés s _zor hﬂﬁi Jlﬂn "lI M - EAETE
1 | ‘-f I“- |I L [ o e

‘-‘r |. b i St Ir"""- \ '|J.r~
: iy Iz \ 304813
FonE  PE15SS EFTE'CAFIuw _Bil_rond i F168.36
J U U P
106 WE AL R o Tiore 1 ~ 151623
-I w | l“ e I | 11 Fnda
157 vE_[i3zT 1 2 72 fireual Rl Zore 2 1a.5028

MW(L Ml,ﬂ«ﬂﬁl\w 'Inml'm_».u»l[ "-vwrvlbln.sam

2 5HI3, < 46 551 B
OF N2 22 2T 54 22 DRMCR02 O s 0

Figure 24

6.6 Dynamic Model Structure

The fundamental principle behind a general discipline of system identification is to
develop accurate models of a plant for condition monitoring and control engineering
purposes. Development of a process model generally cmnsists of two stages. The first
stage is concerned with model structure, whereby the parameterisation of the
relationships that exist between various process variables is performed. During the
second stage values of parameters, given within a model structure, are estimated using
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identification technique, such as Partial Least Squares (PLS). In this section two most
widely known model structures are introduced.

Models are generally considered, identified and implemented in sampled- data
framework, which r a single input, single output linear system have the following
genera form:

gty =ay(t- ) +a,y(t- 2)+..+a y(t- n)+bu(t- d)+..+b u(t- d- m+1) +e(t)
(17)

This equation is referred to as an ‘ Auto-Regressive with eXogeneous variable’ (ARX)
model and subsumes the well known model termed a ‘ Finite Impulse Response’ (FIR)
model, which has the following structure:

y(t) =bu(t- d)+bu(t- d-1)+..+b ut- d- m+1)+et) (18)

In these two equations, y(t) is the output measurement at time t and a,, a,, b, b,
etc, are parameters that are related to the dynamics of the system with n
corresponding to the order of the system. Note that y(t) is the value of the effect

variable that is predicted by the model at time t. This predicted value will differ from
the actual measured value of the effect variable, y(t), by an amount €(t) , which is

termed prediction error. Finally, d isthetime delay of the system (in samples).

In terms of the MonitorMV terminology, minimum delay is given by d while the
maximum delay is given by d +m- 1 in both equations (17) and (18). Order of
dynamicsis specified by n in equation (17). Hence, for example, if maximum delay
is equal to minimum delay and the order of dynamics is set to O, then a resulting
model describes static relationship between cause and effect variable,

Many industrial control engineering technologies restrict themselves to the use of the
FIR model format. The reasons for this are twofold:

An engineer is able inspect the pattern of the FIR coefficients to gain afeel for
the time constants and gains of the process and to also inspect the accuracy of
the model.

There is no need to be concerned with the selection of the ‘order’ of a
transition matrix and the basis for sdlection of the number of terms in the
driving as well as measurement matrix is clear, as indicated above.

The large model structures imposed by the FIR model format, given in equation (18)
do introduce a significant computational burden in solving for control moves, but this
is of little consequence except for very large systems, given the state of today’s low
cost and high performance computer power. However, such structures do create
problems for dstatistical identification methods because of the large number of
parameters that have to be determined.

Although the ARX model form does appear to offer some important advantages over
the FIR structure it does aso have some limitations. The accurate prediction for such
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a model is dependent upon good reflection of dynamics within the sampled history of
the effect variables. Should these signals have significant levels of noise
superimposed upon them or be irregularly measured, as in the case of NOx, then the
ability of the model to accurately predict can be compromised.

6.7 Development of the NOx Prediction M odel

The NOx prediction model was developed by using Partial Least Squares (PLS)
approach, available within MonitorMV package and described in section 3.2. Due to
the irregular measurements of the NOx emissions, model was decided to be of the FIR
(finite impulse resporse) structure, see equation (18), as opposed to ARX, see
equation (17).

The minimum delay was set to 0 minutes, while the maximum delay was set to 3
minutes for each cause signal and the sampling interval was set to 1 minute.

The identified model has been identified with 30 (out of possible 109) scores,
contributing 75.8% to the total variation of the training data, as seen in Figure 25.
Such choice of a number of scores is made in terms of a compromise between the
accuracy of the model and its robustness in dealing with highly cross-correlated
process variables. In this particular case, choosing 30 scores allows reasonable
predictability, as shown later on in this section, while dealing with co-linearity present
among cause variables, particularly thermocouple measurements of the zone
temperatures.

Selact Number of Scores x|
Brapbbute = 01171885436 Fam fam 30

i

Contibullan = 0.73TS4TE mom 0itens
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|
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Figure 25

Prediction of the model over the training data set is displayed in Figures 26, 27 and
28.
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Figure 27
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Figure 28

The developed prediction model has been validated on the data set, which was not
used in identification but did belong to the period when step- tests were performed.

Predictions of the model over this validating data set are displayed in Figures 29 and
30.
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Figure 29
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Figure 30

It is observed that the model was able to generalise to the data set that was not used in
training. Hence, the conclusion has been made that the prediction model achieved a
satisfactory level of accuracy.

Validation has also been performed using the data from January, February, March and
April 2003. Statistical information about the prediction error during these periods is
presented in Table 16.

Validation Period| Mean | Deviation|Maximum | Minimum
January 2003 24.04 18.2 91.83 -29.45
February 2003 26.35 20.63 89.02 -38.15

March 2003 23.24 21.33 97.09 -81.16
April 2003 5.67 19.96 74.2 -50.55
Table 16

Note that it is the mean value of the prediction error that has dramatically changed
during these four months of the validation period. However, standard deviation is also
significant indicating that not all of the dynamics present in the process have been
depicted by the prediction model. Hence, some form of model adaptation is needed,
particularly in order to account for the time- varying nature of the mean change in the
prediction error. Development that addressed this issue is discussed in the following
section.

6.8 Bias Adaptor

In order to improve the robustness of the developed prediction model it has been
decided to employ adaptation of the prediction model in its most smple form -
namely, the exponentially weighted moving average of prediction error or the low
pass filtered prediction error. This is evaluated and continuously added to a prediction
of a model. In this way, non-zero mean of the prediction error is removed and its
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standard deviation is decreased. On the other hand, validity of cause-effect
information contained in the prediction model itself is reduced, as it will be discussed
more thoroughly towards the end of this section.

For a sake of clarity, in the reminder of this report the NOx predictor or prediction
model relates only to the actual PLS- based dynamic model. The NOx estimator
includes the bias adaptor.

As it is stated earlier, the bias adaptor takes the form of a low- pass filter that is
applied to a prediction error whenever the analyser-measured NOx emission value is
available. Then, the filtered output is added to the NOx prediction from the model.

The bw-pass filter can be expressed, in discrete- time framework, by the following
difference equation:

y(k) =(1-a):y(k- 1) +a:u(k) (19)

where O£a £1 represents the ‘learning factor’, y represents the output variable,
which is the filtered prediction error in this particular case, u represents the input

variable, which is the raw prediction error in this particular case, and k represents the
sampling instant in time.

Note that the expression given in (19) is the discrete- time representation of the
Laplace domain transfer function equation given in (15). The reason for expressing it
in discrete-time framework is that, unlike temperature measurements, the NOx
measurement is not available at al times. Hence, the concept of time constant is less
relevant in this case. Also, the term ‘learning factor’ is much more widely accepted
term in adaptive signal processing applications.

By increasing the ‘learning factor’, i.e. a ® 1, more emphasis is placed on adapting
the bias value, i.e. filter output, to alatest prediction error value, i.e. filter input. Since
the filter output is then added to a prediction itself, it is expected that as a ® 1, the
output of the NOx estimator approaches the measured NOx vaue. This is
demonstrated in the following tables where the statistical analysis results for three
different ‘learning factor’ coefficients are displayed, using the same set of validating
data taken from January 2003.

Learning Factor = 0.01

Validation Period| Mean | Deviation|Maximum | Minimum
January 2003 0.81 16.12 77.45 -47.17
February 2003 0.12 16.43 77.74 -60.8

March 2003 0.24 18.16 81.45 -102.5
April 2003 0.08 16.39 70.93 -68.26
Table 17
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Learning Factor = 0.1

Validation Period] Mean |Deviation|Maximum| Minimum
January 2003 0.09 13.34 70.65 -47.06
February 2003 0.03 12.26 65.43 -55.59

March 2003 0.04 14.19 91.59 -88.25
April 2003 0.03 12.71 64.57 -52.91
Table 18
Learning Factor = 0.25

Validation Period] Mean |Deviation|Maximum| Minimum
January 2003 0.04 10.94 56.92 -39.97
February 2003 0.01 9.93 51.84 -39.67

March 2003 0.02 11.64 84.79 -77.88
April 2003 0.01 10.33 58.35 -41.67
Table 19
Learning Factor = 0.5

Validation Period] Mean |Deviation|Maximum| Minimum
January 2003 0.01 7.44 36.81 -32.66
February 2003 0 6.75 38.45 -30

March 2003 0.01 7.98 66.13 -63.59
April 2003 0.01 7.04 52.34 -30.76
Table 20

Note that as the learning factor approaches its maximum value of one, the ‘size’ of
estimation aror, measured in terms of any of the four statistical measures, given in
Tables 17 through to 20, tends to zero.

Another interpretation of the bias adapter can be made by considering the frequency-
domain analysis of signals and systems. In this framework, the bias adapter can be
seen as a model uncertainty block. In other words, the bias adapter compensates for
those dynamics that are unaccounted for by the PLS- based prediction model. In this
context, the learning-factor determines the bandwidth of unmodelled dynamics. More
specifically, the smaller the ‘learning factor’ is the lower the bandwidth of the
unmodelled dynamics. Hence, if the learning factor’ is close to zero then only the very
low- frequency components of unmodelled dynamics are compensated for by the bias
adaptor. On the other hand, if the ‘learning factor’ is close to one then almost all of
the frequencies are compensated for by the bias adaptor. In such a case, however, the
prediction model is rendered obsolete since the prediction error is forced to zero by
the action of bias adaptor alone. Hence, a compromise needs to be struck between
reliance on structured information contained in the prediction model and the
compensation for the unmodelled dynamics.

In order to further demonstrate effect that a learning factor has on the error of the
NOx estimator, distribution functiors of the NOx estimator error for three different
values of a learning factor are plotted in Figure 31 alongside their corresponding
Normal (Gaussian) distribution functions. Data over which prediction error is
evaluated has been collected during January 2003.
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It can be seen in Figure 31 that as the value of the learning factor increases the
corresponding distribution functions become steeper, i.e. variance or standard
deviation is reduced, and the centre of the distribution function, i.e. the mean value of
prediction error, is shifting towards the origin. This figure, therefore, demonstrates
further the effect that learning factor has on the character of a prediction error.

Other important information that follows from Figure 31 is, however, the fact that the
prediction error distribution function is relatively similar to the Gaussian (hormal)
distribution for all 3 choices of a learning factor values. This result indicates that the
NOx estimator accounts for most of the structured information concerning NOXx
emissions.

6.9 Validation Monitors

6.9.1 Introduction

In order to improve the reliability/ robustness of the overall NOx estimator, additional
validating condition monitors have been implemented. The purpose of these condition
monitors is to validate and, in the case of instrumentation failure, infer the values of a
subset of cause variables, namely temperatures in zones 1 and 2 and the combustion
air temperatures. In this way, the overal reliability of a developed solution is greatly
improved in the case of possible instrumentation failure. Note that these validation
monitors use the same principle as those developed in AvestaPolarit application.

In this particular application, cause variables that do exhibit high level of cross
correlation are the temperatures in the zones 1 and 2 and the combustion air
temperatures from the first 7 zones of the furnace. Hence, two PCA- based validation
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monitors have been designed using the MonitorMV package with a training data set
representing three months of data (January through to March 2003). Their respective
details are discussed in the following two sub- sections.

6.9.2 Validation of Zone Temperature M easurements

This condition monitor considers temperature measurements from zones 1 and 2,
which are highly cross-correlated process variables. These signals are denoted as
9.ME- 16.ME in Table 15.

A PCA mode with 3 principa components (PCs) contributes 97.03% to the total
variation of the training data set, as seen in Figure 32.
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Figure 32

The reason for taking more than 1 principal component in this case is the
improvement of the predictability of a model. While 1 principal component seems to
be sufficient, by observing Figure 32, it is noticed in the prediction trends that there is
a significant improvement in predictability over both the training and the validating
data set if more principal components are included. However, in order to maintain
good detection and isolation of the faulty thermocouple not too many principal
components should be selected.

Results of the satistical analysis, performed on the prediction errors of these
temperature measurements over the April 2003 (validating data set), are given in
Table 21.

Signal Tag| Mean Deviation |Maximum| Minimum
2TT1 1 1.08 5.21 27.07 -21.5
2TT1 2 1.52 10.25 4211 -41.93
2TT1_9 -7.81 11.77 63.35 -54.26
2TT1_10 3.53 6.76 38.17 -36.58
27712 1 -1.77 7.72 30 -29.39
2TT2 2 181 9.74 37.12 -49.63
2TT2_9 1.23 11.52 59.32 -45.24
2TT2_10 0.29 10.04 56.88 -42.4

Table 21

It is important to note that while the standard deviation of these prediction errors is
not very large their maximum and minimum values are. An attempt to improve
robustness of this condition monitor is presented in section 6.10.
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6.9.3 Validation of Combustion Air Temperatures M easurements

Variables that are used by this condition monitor are the combustion air temperatures
from the first 7 zones of the reheating furnace.

In this case, a PCA mode with 3 PCs contributes 96.76% to the total variation of the
training data set, as seen in Figure 33.
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Figure 33

Once again more than 1 principal component is taken in order to improve the
predictability of a developed PCA- based model.

The table given below contains results of the statistical analysis, performed on the
validating data set (April 2003), of prediction errors for this PCA model.

Signal Tag| Mean Deviation |Maximum| Minimum
2TT1L 1.02 4.22 26.27 -24.35
2TT2L -0.57 1.45 4.45 -7.08
2TT3L 1.61 5.3 30.39 -18.92
2TTAL -2.43 4.26 21.79 -21.86
2TT5L 1.17 4.53 16.18 -24.79
2TT6L 0.11 5.03 21.11 -15.79
2TT7L -1.48 4.43 13.76 -17.23

Table 22

Once aggin, maximum and minimum values of the prediction errors encountered for
the validating data set are relatively large. Hence, an attempt has been made, as
described in section 6.10, to reduce the number of false alarm occurrences associated
with this validation monitor.

6.10 Improving Robustness of Validation Monitors

Statistical analysis of the prediction errors for 2 PCA- based validation monitors has
revealed that these monitors are not highly accurate, as shown in sections 6.9.2 and
6.9.3. In other words, the ‘sizes’ of prediction errors are not necessarily as small as
one may require. As a result, prediction errors of the PCA- based statistical models
that are routinely encountered are of comparable size to the measurement errors which
are result of consequential systematic error present in the instrumentation equipment
and, therefore, have consequential impact on the accuracy of the PLS- based
prediction model.
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The method that was employed in this sub- project for improving the robustness of
condition monitors is identical to that described in section 5.4.

The statistical information concerning the filtered prediction errors, evaluated over the
validating data set (April 2003) for both validation monitors, is displayed in Tables 23
through to 14. Inorder to demonstrate the effect that the choice of time constant has
on a size of filtered prediction error three different cases were considered. Results for
the zone temperatures’ validation monitor are given in Tables 23, 24 and 25, while the
results for the combustion air temperatures validation monitor are given in Tables 26,
27 and 28.

Time Constant = 1 minute

Signal Tag| Mean Deviation |Maximum| Minimum
2TT1. 1 1.08 5.16 23.5 -21.43
2TT1 2 1.52 10.08 41.06 -41.18
2TT1.9 -7.81 11.61 60.21 -52.93
2TT1_10 3.53 6.63 37.08 -34.55
2772 1 -1.77 7.65 28.61 -28.66
2TT12 2 1.81 9.62 36.26 -45.16
2TT2_9 1.23 11.3 57.95 -42.99
2T72_10 0.29 9.79 52.49 -41.46

Table 23

Time Constant = 10 minutes

Signal Tag| Mean Deviation |Maximum| Minimum
2TT1 1 1.08 4.55 16.04 -17.93
2TT1 2 1.52 8.17 37.8 -33.24
2TT1 9 -7.81 9.94 46.39 -36.83
2TT1_10 3.53 5.26 22.67 -23.4
2TT12_1 -1.77 6.87 24.04 -22.73
2T712_2 181 8.44 29.1 -35.46
2TT12_9 1.23 9.06 42.47 -32.62
2TT2_10 0.29 7.18 33 -30.92

Table 24
Time Constant = 1 howr

Signal Tag| Mean Deviation |Maximum| Minimum
2TT1 1 1.08 3.46 9.96 -9.88
2TT1 2 151 5.53 23.03 -19.1
2TT1 9 -7.81 6.74 20.79 -25.6
2TT1_10 3.53 3.45 13.71 -11.43
27712 1 -1.77 5.74 18.38 -18.5
2TT2 2 1.81 6.41 18.61 -19.77
2TT2 9 1.23 6.48 27.13 -16.49
2T72_10 0.3 4.48 15.75 -16.45

Table 25
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Time Constant = 1 minute

Signal Tag| Mean Deviation |Maximum| Minimum
2TT1L 1.02 4.18 26.08 -20.08
2TT2L -0.57 1.44 4.39 -7.01
2TT3L 1.61 5.27 30.15 -18.64
2TT4AL -2.42 4.23 18.49 -21.65
2TT5L 1.17 451 16.11 -24.7
2TT6L 0.11 5 20.98 -15.7
2TT7L -1.48 4.41 13.7 -17.12

Table 26
Time Constant = 10 minutes

Signal Tag| Mean Deviation |Maximum| Minimum
2TT1L 1.02 3.36 20.45 -13.37
2TT2L -0.57 1.29 3.67 -5.74
2TT3L 1.61 4.68 22.01 -15.39
2TT4L -2.42 3.64 9.86 -16.43
2TT5L 1.17 3.88 13.67 -21.97
2TT6L 0.11 4.46 16.96 -13.53
2TT7L -1.48 3.96 11.37 -14.45

Table 27
Time Constant = 1 hour

Signal Tag| Mean Deviation |Maximum| Minimum
2TT1L 1.02 2.02 10.12 -5.25
2TT2L -0.57 0.97 2.79 -3.33
2TT3L 1.59 3.25 11.06 -9.16
2TT4AL -2.42 241 5.32 -10.2
2TT5L 1.18 2.48 8.11 -9.47
2TT6L 0.12 3.54 9.64 -8.67
2TT7L -1.49 2.96 7.75 -8.28

Table 28

As expected, and already discussed in section 5.4, the standard deviation of prediction
errors decreases as the time constant of the corresponding filter increases. On the
other hand, mean value remains almost unchanged. This is due to the fact that low
frequency components of the prediction error, which are main contributors to the
mean value, are unaffected by the low pass filtering.

6.11 Online Implementation of the NOx Estimation Scheme

6.11.1 Introduction

The developed NOXx estimation scheme and the associated bias adaptor as well as the
validation monitors have been implemented in real-time at the SSAB site in Borlange,
by means of the MonitorMV Online system. The existing online application is
expected to be used in any future developments of the NOx control scheme, (most
probably implemented in an advisory form) and of a condition monitoring system of
the overall reheating furnace.
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In the case where the outputs of the PID controllers, i.e. the flow rates of air and fuel,
for the first two zones of the furnace drop below 10% of their capacity, al the
application components that include the PLS predictor, bias adaptor and validation
monitors are switched to ‘Manual’ state. Otherwise, the application isin ‘Auto’, i.e.
normal operating state. This is due to the inaccurate measurements of air and fuel
flow rates, which play dominant role in NOx predictions, when their levels are below
10% of their capacity.

6.10.2 Layout of the MonitorMV Picture

The primary screen that should be observed by operator personnel is Picture 1,
displayed in Figure 34. In this picture schematic of the overall NOx estimation
scheme is presented.

i1 - P R D (7L DR e VEDE|
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validating Monitors  Act

Figure 34

The operating status of PLS predictor, bias adaptor and validation monitors are
displayed in the bottom right corner of the picture. In al cases ‘Manual’ status is
coloured red and ‘Active’, representing ‘auto’ state, is coloured green, as shown in
Figure 34.

Cause signals are listed in the left side of the picture while the NOx measurements are
placed at the top of the picture. Instantaneous values of several intermediate variables
within the NOx estimation scheme, are displayed in the middle of the picture. These
include PLS- based NOx prediction, prediction error and bias estimate. Finally, the
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value of the NOx estimate, as a result of PLS prediction and bias adaptation, is given
in the right side of the pictue.

Cause signals that are subjected to validation, namely temperature measurements
from the first two reheating furnace zones as well as the combustion air temperatures,
are coloured green (normal status) or red (abnormal status) depending on whether or
not their respective filtered prediction errors have violated corresponding threshold
aert.

6.10.3 Assignment of Alarm Levels, Prediction Error Filter Time Constants and Bias
Adaptor’s Learning Factor

The alarm system, available within the MonitorMV Online system, has been applied
to filtered prediction errors of PCA- based validation monitors. At the present, alarm
levels have been set according to the maximum/minimum values of the filtered
prediction errors, evaluated over the validating data set. In thisway, it is believed that
the number of false alarms would be significantly reduced, improving confidence of
the operation personnel in the robustness of the condition monitoring scheme.
Depending on the future performance of the overall scheme hese limits may be
reduced from these somewhat conservative levels in order to increase sensitivity of
the condition monitors.

Asfar as the choice of the filter time constant is concerned, it is decided to be initialy
st to 10 minutes for al of the signals. Such choice is seen as the compromise
between the speed of the response to sudden and rapid changes in prediction errors
and the reduction of senstivity to a short- lived rapid disturbances that would
otherwise unnecessarily trigger alarm.

Limits imposed on filtered prediction errors of the validation monitors are given in the
Table 29.

Signal Tag| Positive Alert Level [Negative Alert Level
2TT1 1 20 -20
2TT1 2 40 -40
2TT1. 9 50 -50

2TT1_10 25 -25
27721 25 -25
2TT2_2 35 -35
2TT2.9 45 -45

2TT2_10 35 -35
2TT1L 25 -25
2TT2L 10 -10
2TT3L 25 -25
2TT4L 20 -20
2TT5L 25 -25
2TT6L 20 -20
2TT7L 15 -15

Table 29
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The karning factor of the bias adaptor is set to 0.01. As a result, only the very low
frequency components of the unmodelled dynamics are compensated for. The
reminder of the process dynamics are to be emulated by means of the PLS- based
prediction model. Hence, it is expected for the estimator’s error to have zero mean
and be largely composed of high+ frequency components that have not been modelled
by PLS method and have not been compensated for by means of a bias adaptor.

6.12 Summary

The need to protect the environment from combustion generated emissions, such as
carbon monoxide (CO) and nitrogen oxides (NOx) has led in recent years to
considerable demand for improved combustion system design and operation. And
while the most important business drivers in economic considerations of the reheating
furnace are minimisation of energy consumption and maintenance of high throughput,
it is evident that, with increasingly stringent environmental regulations and heavy
penalties for non-conformance, furnace emissions are likely to become a significant if
not crucial cost driver. Such environmenta considerations are forcing process plants
to measure emissions and investigate methods for their cost- effective reduction.

The crucia step in attempting to address the issue of NOx emissions in cost- effective
manner is the development of accurate cause- effect prediction model. Such model

would not only offer viable and economic aternative to costly hardware- based
analysers, in aform of a‘soft sensor’, but also provide the basis for a devel opment of
aNOx control scheme.

Additionally, sudden and rapid change in terms of NOx emissions that are not
accounted for by the developed prediction model may be a symptom of an operational
problem of the reheating furnace. Such issue was not covered in this project.
However, development of prediction model clearly benefits attempt to develop the
condition monitoring scheme of the reheating furnace.

This chapter details development of a NOx estimation scheme, using MonitorMV
Design and Online systems, for a reheating furnace U302 at the SSAB site in
Borlange, Sweden. Specification and diagram of this reheating furnace are presented
in Figure 4. This sub-project has been carried out in collaboration with process control
engineers of the SSAB, in particular Mr Jonas Engdahl, Mr Lennart Klarnds and Mr
Magnus Norberg, as well as Mr Per-Olof Norberg, advanced process control
consultant.

In order to develop accurate prediction model important decision in the early stages of
model design is the selection of a set of cause (input) variables. Such decision is made
by employing process knowledge as well as some statistical analysis methods, notably
correlation analysis. In the initial development of this project, correlation analysis was
hampered by the lack of process excitation and irregular measurements of NOx
emissions. Hence, the process knowledge provided a crucia insight into the
underlying cause- effect structure of the model to be developed. In particular, impact
on the NOx emissions by the variables that are related to the first two zones
(preheating zones) of the furnace was highlighted by Mr Per-Olof Norberg. The most
important cause variables from these two zones have been identified as the flow rates
of air and fuel into the burners as well as the zone temperatures.
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Another essential part of the overall prediction model development is the training data
collection. This is due to the fact that the most system identification tools belong to a
so- called ‘data- driven’ technology. Hence, quality training data is truly the only base
for building a quality prediction model using these ‘data- driven’ technologies. In

particular, if a prediction moddl is to be of dynamic form, as it is the case with NOx
predictor, then a training data set has to be ‘sufficiently excited’ in order to reveal

information concerning dynamic relationships between cause and effect variables. In
order to sufficiently excite the process numerous step tests have been performed on

the flow rates of air and fuel into the burners of the first two zones of the furnace.

The NOx prediction model has been developed by using Partial Least Squares (PLS)
approach, available in MonitorMV. Due to the irregular measurements of the NOx
emissions, model was decided to be of the FIR (finite impulse response) structure.
The developed model has shown satisfactory level of accuracy and the statistical
analysis of its prediction error has shown that prediction error distribution function is
similar in shape to an equivalent Norma (Gaussian) distribution. This finding
indicates that the NOx prediction model accounts for most of the structured
information concerning NOx emissions.

In order to improve the robustness of the developed prediction model and ensure its
validity in a face of non stationarity of a process, it has been decided to employ
adaptation of the prediction model in its most simple form. Namely, the exponentially
weighted moving average of prediction error, i.e. the low- pass filtered prediction
error, is evauated and continuously added to a prediction of a model. In this way,
non zero mean of the prediction error is removed and its standard deviation is
decreased.

Also, the additional validating condition monitors, based on Principal Component
Analysis have been implemented. These monitors are used © ensure availability of
measurements for a subset of cause variables. In this way, the overal reliability of a
developed solution is greatly improved in the case of possible instrumentation failure.
This validation scheme has been employed for those cause variables that exhibit
strong cross- correlations. These were found to be the temperatures in the zones 1 and
2 and the combustion air temperatures from the first 7 zones of the furnace.

However, it has been found that prediction errors of the PCA- based validation
models that are routinely encountered are of comparable size to the measurement
errors which are result of consequential systematic error present in the
instrumentation equipment and, therefore, have consequential impact on the accuracy
of the PLS- based prediction model. As a result, sensitivity of the condition monitors
had to be reduced by performing low pass filtering of their prediction errors. In this
way, focus is placed on sow drifts rather than short- lived rapid and sudden
disturbarnces.

The developed NOx estimator, consisting of the PLS- based prediction model and the
bias adaptor, as well as the associated validation monitors have been implemented
onling, using MonitorMV Online system, at the SSAB site in Borlange, Sweden,
providing the continuous estimation of the NOx emissions. This NOx estimator is
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expected to facilitate further developments of NOx control scheme and aid in a
development of a condition-monitoring scheme for a reheating furnace.
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7. Sub-project 3: Investigation of the use of Multivariate Statisticsfor
the Modelling of an Acid Regeneration Process

7.1 Introduction

This sub-project is concerned with investigations that relate to an Acid Regeneration
process at the SSAB factory at Borlange.

The Acid regeneration process is used primarily for the regeneration of pickling
liquor, namely hydrochloric acid, that is used to remove iron oxide on the steel during
the continuous annealing of the steel slabs. As aby- product of acid regeneration, iron
oxide is created. This iron oxide has a market value.

In 2001, the Acid regeneration process had only recently been commissioned. The
operational characteristics of the process were only just beginning to be appreciated.
It was not properly understood how to avoid situations that gave rise to large deposits
of iron oxide on the walls of the regeneration plant — such deposits being difficult to
remove and giving rise to costly maintenance exercises.

For this reason it was decided to attempt to apply multivariate statistical process
analysis in order to gain knowledge into the process and solve operational problems
that were causing sub- standard performance of the process. Although some progress
in gaining understanding of process operation has resulted from applying MSPC to
the acid regeneration plant, the overall success of this sub-project has been more
limited than those previously described and there is presently no lasting and adequate
condition monitoring solution for this process.

Attempts to exploit the condition monitoring technology to the acid regeneration plant
are described in this chapter in chronological order. The main reason for this ordering
isthat it allows the reader to properly understand the sequence of events and decisions
that were taken during the programme of work.

Although the programme of work has been limited in its success, there are a number
of positive interpretations that can be made and these have influenced the overall
programme, including the manner in which the other sub-projects have been
approached.

7.2 Basic Description of the Acid Regeneration Process

The Acid regeneration plant is a process that regenerates used pickle liquor, which
results from the pickling of hot- rolled steels using hydrochloric acid. As a by

product, ferric oxide (Fe,O,, hemstite) is produced, which can be used for
subsequent industrial processing.

The operation of the process consists of the following general steps:

1. The spent pickle liquor (waste acid), which is taken from the pickling bathsis
fed over an installed waste acid filter in order to separate solid particles.
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2. The waste acid is pumped to the spray booms. From there it is sprayed into
the reactor by nozzles, which are attached to the ends of the spray booms.

3. The e actor is fired by four burners placed tangertially on one level that
generate a circulating stream of hot gases in the reactor. The supply of energy
is necessary for evaporation of water, for reaching the reactor temperature and
for compensating the loss of heat in the system.

4. In normal operation node, the hot roast gas consists mainly of steam, HCI
combustion gas and minor quantities of ferric oxide dust, leaving the reactor
with atemperature of about 390 degrees centigrade.

5. The ferric oxide, resulting from the reaction, falls down into the reactor-cone
and is carried out by arotary valve.

6. Theroast gasis fed into a venturie and mixed with waste acid. Roast gas is
cooled and the concentration of the waste acid is increased.

In the project, further parts of the process have not been considered and are therefore
not described in this section.

7.3 Phasel: Initial Developments

This section describes developments that took place during the first stage of the
project. In particular, an initial development of PCA-based modes for the overall
process is described. Problems, which were encountered and decisions which were
made, are discussed in this section.

The irst attempts to develop a statistical model to describe the acid regeneration
process were based around the principle that if al available data is collected over a
significant period, covering many days of process operation, then such data should
provide a basis for representing the normal profile of the process. Subsequently, if
other data is referenced against this profile then there should be a basis for
determining if this other datais normal or not.

Following this theme, resulting PCA- based models revealed several clusters in the
score space, i.e. the space that is spanned by the retained principal components These
clusters correspond to

normal acid operation,

starting up/shutting down ‘water mode' operation, and

periods during which the acid plant was not operational.
and are illustrated in figure 35.
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Figure 35

Ellipses in Figure 35 represent multivariate Gaussian based probability density
function (PDFs) boundaries that classify regions of process operation Each Class (or
ellipse) is associated with a particular cluster, which, in turn, corresponds to a
particular mode of operation of the acid regeneration plant, as shown in Figure 35.

By means of principal component loadings, described by Q, in equation (4), it is
possible to relate process variables to these three clusters and gain some
understanding of how different modes of operation relate to individual process
variables. For example, score 1 is dominated by the flow rates of air and fuel into the
burners of the acid plant’s burner system. Hence, the main distinction between acid
mode of operation and ‘ OFF mode of operation lies in significant change of absolute
value of these process variables, as is to be expected.

Also, temperatures inside the burners chambers are amost completely uncorrelated
with any other process variable and are almost the sole contributors to the second
principal component. These variables are responsible for the ‘stretched’ shape of the
‘OFF mode cluster since during this mode of operation burner temperatures are
dowly decreasing, causing the score space trgectory to move from the top to the
bottom corner of the ‘OFF mode cluster, as shown in Figure 36.
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Figure 36

The results described here are of interest and highlight the ability of statistical
methods, present within MonitorMV system, to detect dfferent modes of process
operation and relate them to the behaviour of individual process variables.

However, the momentum of this initial progress in the project was not maintained —
this because it did not prove possible to relate the signals being monitored by
MonitorMV to the causes of main concern to the process operating staff. The plant
management were engaged in their own campaign to get to an understanding of the
process and were making frequent changes to aspects of the process and to the process
operating conditions. Information concerning such changes was not being referenced
by MonitorMV or was not in a form that could be utilised. The outcome was that,
although MonitorMV could detect that the process was operating in a different
regime, there was no basis for deciding the basis for the difference or if the difference
corresponded to normality or otherwise.

The above considerations became clear after attempting to relate to al three modes of
operation simultaneoudly. It was therefore decided to rarrow the scope of examination
to only the norma acid mode of operation. In this way it was thought that the
sengitivity of the model would be increased and small-scale variatiors that may differ
from the normal would be more clearly highlighted. However, as a result of increased
sengitivity of the principal component models, the non-stationary nature of the process
became even more apparent. In particular, it was found out that the general statistical
model had extremely limited period of validity before it being rendered obsolete by
some change in the operating condition of the acid regeneration plant.

The real lesson here is that progress in statistical modelling for condition monitoring
isonly feasible if a processis settled in its operating conditions. Any changes must be
of a consistent and observable nature and must be able to be referenced by the
monitor if any progress is to be made. This, unfortunately, was and is not the case
with the acid regeneration plant.

Page 62 of 74



7.4 Phase |1: Attempt to Develop Cause- Effect Model of the Acid Regeneration
Plant

The programme of work progressed in order to try to make some headway in
producing models to describe the behaviour of the acid plant. It was decided to
investigate the possibility of determining a model that would relate cause signals with
effect signals by employing a PL S based model. In this way, non-stationarity that was
a direct result of the changes in cause signals would be accounted for by such model
and the validity of a model would be extended in time.

Severa sets of cause signals were chosen. Notably, the flow rates of air and fud into
the burners, flow rates of used hydrochloric acid into the reactor, as well as the set-
points of several PID loops were used to develop prediction models. All the other
process variables were treated as effects.

Unfortunately, this approach was hampered by the lack of excitation in the measured
cause variables and the unavailability of the dominant cause variable measurements,
namely the quality of the incoming acid. As a result, no accurate cause- effect model
was devel oped and this direction was abandoned.

7.5 Phase|l1: Development of Iron Oxide Condition Monitor

The final focus in this project has been placed on the reactor unit of the process and
development of a statistical model to relate to the quality of iron oxide. Laboratory
analysis results of the iron oxide quality were obtained and used to select data sets
that corresponded to satisfactory operation.

However, the chemical composition of the iron oxide was analysed irregularly and
infrequently. Also, there was no guarantee that the information about the timing of the
sample collection was correct. Soon it became apparent that in order to develop an
adequate statistical description it would be necessary either to analyse iron oxide
quality more regularly or to get regular feedback from process engineers concerning
the overall quality of process performance.

In collaboration with process operations staff, sets of data were obtained which
corresponded to satisfactory and to unsatisfactory behaviour respectively. Also,
crucial process variables, considered to reflect problems in the process operation,
were identified (namely 6 particular reactor temperature measurements). A PCA
model has been developed using the portion of data described as representing
satisfactory production. Overall, 749 data points have been used for the training of the
statistical model.

Due to the lack of strong cross- correlation between reactor temperatures, 3 out of
possible 6 principal components were retained contributing 83.45% to the variation of
the training data set, as shown in Figure 37.
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Figure 37

The ability of the developed statistical model to predict reactor temperature
measurements is observed in Figure 38. Note that, on this display, trends that are
coloured in blue, green and magenta represent actual temperature measurements while
the brown lines represent the corresponding predictions of these signals, based on the
statistical model. In this way, any change in correlation patterns can be observed on a
variable- by- variable basis in order to establish what type of correlation pattern
breakdown has occurred. In this particular case, the PCA model has managed to
capture the mgjority of variation in the training data set, as seen on the prediction
trend display.
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Figure 38

Using the information, provided by the production manager of the acid regeneration
plant, about the quality of produced iron oxide the ability of the developed statistical
model to detect substandard production was assessed.

In particular, production during 9" and 10" of February 2003 was reported to have
been sub- standard in terms of the iron oxide quality. On 8" February the prediction
errors from the statistical model start to increase significantly and remain significant
throughout 9" and 10" February as seen in Figure 39. This clearly indicates the
modd’ s capability to detect deviation in process performance.
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Figure 39

Changein
correlation pattern

In particular, it is observed that the difference between the prediction and the actual
value of the outgoing roast gas temperature (signal 1D 1101.ME, tag name TT101) is
increasing with time. This indicates that the outgoing roast gas temperature is smaller
than expected during this particular period. A similar deviation from expected
behaviour is observed in the case of temperature under furnace (signal ID 1111.ME,
tag name TT108), while the feed cyclone temperature trend (signal ID 1112.ME, tag
name TT110) is seen to be higher than its predicted trgjectory.

Hence, in this particular case the prediction trends provide a clear indication that the
process performance is continuously deviating from the operating regime that was
present in the training data set. Furthermore, the prediction trends indicate which
variables have been affected the most and in what way. Such information could be
employed to inform operators of deviating performance and provide guidelines, in
terms of reactor temperatures, on how to improve process performance.

Also, during the 1¥ and 2" of March 2003 iron oxide quality was sub- standard and,
therefore, data representing this period was aso analysed using the developed
condition monitor. The most clear indication of degrading performance, as seen in
Figure 40, is presented through a steady increase in predictions of outgoing roast gas
temperature (signal ID 1101.ME, tag name TT101), the reactor temperature at the top
level (signa ID 1104.ME, tag name TT101.3) and the temperature below the reactor
(signa ID 1111.ME, tag name TT108) when compared to the actual values of these
signals.
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Hence, once again developed PCA model was able to detect change in the correlation
pattern in several reactor temperature measurements.

However, a serious limitation of the developed statistical model is its restricted
validity. This is due to the limited range of process operation that was captured in the
training data. It became necessary, therefore, to extend the training data set to include
other operating regimes that deliver satisfactory process performance.

As aresult of this case study it was decided to perform three specia production runs
that would last for 3 weeks. During this period, samples relating to the iron oxide
quality were collected every two hours, both new and old acid nozzles were used and
pressure as well as the flow rate of the incoming acid would be varied. In this way, it
would be possible to establish whether or not different product grades can be
characterised as well as be distinguished from each other by means of datistical
modelling. If successful, such modelling would pave the way for the optimisation of
process performance, ensuring that the iron oxide quality conforms to desired
specifications.

This exercise in the project has taken place in the last month of active work. Only
around 50% of the iron oxide quality samples have been analysed and this is not
enough to provide an effective statistical analysis.

7.6 Phase I V: Final Statistical Analysis of the Acid Regeneration Process

7.6.1 Introduction

In this section results of the final statistical analysis performed on 10 days of
operation, during specia process runs that were undertaken during the month of May
2003, are reported.
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Variables that were the focus of this analysis were chosen to be reactor temperatures
and burner chambers temperatures. Due to the fact that these two sets of temperature
variables are mutually uncorrelated, two PCA nodels were developed. MonitorMV
specific signal 1Ds, tag names and descriptions of these signals are given in Table 30.

MonitorMV signal ID| tag name Description

1101.ME TT101 temperature of the gas leaving the reactor
1102.ME TT101.1 | temperature in the reactor at the burner level
1103.ME TT101.2 | temperature in the reactor at the middle level
1104.ME TT101.3 temperature in the reactor at the top level
1111.ME TT108 temperature at the bottom of the reactor
1112.ME TT110 |temperature of the roast gas inside the cyclon
1105.ME TISAL107_3| Temperature inside the burner chamber no. 1
1106.ME TISA107_4| Temperature inside the burner chamber no. 2
1107.ME TISA107_5| Temperature inside the burner chamber no. 3
1108.ME TISA107_6| Temperature inside the burner chamber no. 4

Table 30

Training data were composed of those periods of data that corresponded to a
satisfactory iron oxide production. All together 35,681 samples, with sampling
interval of 6 seconds, were used for training of the models.

Also, the validating data that corresponded to the satisfactory production was used to
observe whether developed models were able to generalise to those periods, which
represented satisfactory performance of the process. Overall, 12,103 samples, with
sampling interval of 6 seconds, were used for the validation of the models.

Finally, the data that corresponded to sub- standard production of iron oxide was used
to test developed models. All together 56,366 samples, with a sampling interval of 6
seconds, were used for the testing of the developed PCA models.

Note that only data that was collected during the acid mode of operation was used.

7.6.2 Reactor Temperatures Condition Monitor

In the case of reactor temperatures there is no strong cross- correlation, as it was
already shown in section 7.5 and observed in Figure 37 where the relative amplitudes
of the first few principal components are not significantly larger than the last few
principal components. Using the cross- validation technique and PRESS statistic,
described in more detail in section 3.1, it was decided to choose two principal
components. As shown in Figure 41, first 2 (out of possible 6) principal components
contribute 86.59% to the total variation of the training data set.
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Figure 41

The predictions of the individual reactor temperatures are shown in Figures 42 and 43
for two segments of the training data set.
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Figure 43

As observed in both of these figures, the PCA model did accurately depict most of the
features present in the training data set.

Results of the statistical analysis performed on the prediction errors for the training
data set are presented in Table 31.

tag name Mean Deviation Maximum Minimum
TT101 0 2.47 12.86 -12.96
TT101.1 -0.01 6.03 24.19 -33.44
TT101.2 0 4,78 31.7 -24.14
TT101.3 0 1.62 5.67 -7.35
TT108 -0.01 9.09 44.9 -62.51
TT110 0 1.64 8.67 -15.59
Table 31

PCA predictions for the validating data set are displayed in Figure 44 and the results
of the statistical analysis performed on the prediction errors for the validating data set
are given in Table 32. The results show that the developed PCA model was not able to
accurately predict reactor temperatures at all points for the validating data set but
there is good correspondence for certain of the signals across certain portions of the
data ranges. There appears to be a singular event, just past the half way stage that
givesrise to an offset on all but the last of the temperatures on display.

Page 69 of 74



Dresign 1 - moritoray vl - Soneen 2 - PEL = Dlﬂ

File. Toois dpeciicaion gsdar: Eanee| Help

Diaia Proceseing | Erora Modaling | FOF Claseification | Chare. | Hangel 10007d Oficaiis vadhos |
‘OpHons... | Toggle tert || Trerd 107 | Trend 300 | Zoomin | Zonmowm | =Pan | Pan= | Aesst |

L ont 1205 T 2516 TS 0. MariPrs bue 200

101 WE _' _5532 i
1 i H

b0 e S 1
| o] 520

11013 W [L05T

i L

b0 e poon
| Al T4
Ve pans

= BET

ke piosas e
E il T

Mm
i 2T, <1 2N, ]
TTWr Al 21 A 1 1 B3 1125 26 TS
Figure 44

tag name Mean Deviation Maximum Minimum

TT101 -5.32 3.31 3.55 -19.86
TT101.1 15.69 5.73 38.96 -1.89
TT101.2 3.85 8.28 23.19 -10.36
TT101.3 -2.26 1.63 2.48 -7.32

TT108 11.11 12.72 65.49 -17.62

TT110 -1.13 0.9 2.35 -6.14

Table 32

In the case of the data that corresponded to a sub- standard production of the iron
oxide, PCA predictions for three different segments are displayed in Figures 45, 46
and 47.
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Also, the results of the statistical analysis performed on the prediction errors are
presented in Table 33.

tag name Mean Deviation Maximum Minimum
TT101 -0.04 3.12 14.73 -13.59
TT101.1 2.88 9.46 34.3 -30.56
TT101.2 -0.46 10.33 31.47 -30.13
TT101.3 -0.33 1.76 7.5 -15.7
TT108 5.05 15.77 59.36 -69.61
TT110 -1.11 2 11.74 -10.93

Table 33
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It is observed, by looking at Figure 45, that prediction errors for this period of
unsatisfactory production are kept low. Hence, in this particular case the analysis is
not able to detect a sub- standard quality of iron oxide.

However, there is a more significant deviation in prediction errors for the periods
corresponding to Figures 46 and 47. Unfortunately, by comparing results given in
Table 32 with those in Table 33 it is shown that such deviation is not significantly
larger than the deviation that was observed in the validating data set.

It should be noted, however, that a thorough analysis of the data can only be
conducted only after al the iron oxide quality samples, corresponding to three special
runs, have been made available. The aove investigation is of a preliminary nature
only — although there is an indication that the impression of the operations staff that
the six chosen temperatures have influence on quality might be misguided.

A proper analysis needs to be progressed once all of the data from the three
experiments is made available. The indication is that more than the six temperature
signals may need to be included and there is the possibility that more experiments
may be needed in order to reach a proper conclusion as to the parameters, which are
most influential upon the quality of the iron oxide. Proper interpretations can only be
made once there is enough data to provide an effective basis for statistical
interpretation.

8. Conclusions and Future Directions
8.1 Thermocouple Validation Scheme

The Vaidation scheme applied to the Reheating Furnace at the AvestaPolarit factory
has been structure into three sections. Each section is comprised of temperature
measurements that are correlated with each other. There is no correlation between the
temperatures of different sections. This scheme is shown to provide a viable basis for
determining the integrity of temperature measurement in the furnace. A particular
anomaly has been analysed (section 5.6) and it is shown clearly that an installed
condition monitor would have detected this anomaly and would have provided a valid
estimate of temperature that could be used to temporarily replace the measurement
during the time of anomaly. Such validation must provide the means for more
effective energy management of the furnace by avoiding the positioning of control
system set points at inappropriate temperatures.

Future devel opments should focus on placing an the application into the control room
of the reheating furnace A, providing accurate and reliable validation of thermocouple
measurements. Also, a similar scheme should be employed for the reheating furnace
B. Furthermore, the concepts that are employed in validation of thermocouples should
be employed in the future for other instrumentation equipment that exhibits high
levels of cross- correlation.
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8.2 NOx Estimation Scheme

The main cause signals for the NOx emissions were found to be fuel and air flowrates
in preheating zones 1 and 2. Additionaly, it has been found that the flow rate of the
atomising steam into the burners has a significant impact on the NOx emissions. This
particular variable is found to be negatively correlated with NOx emissions. In other
words, increase in the total flow rate of atomising steam into the burners is found to
reduce NOx emissions. Hence, the total flow rate of atomising steam could be seen as
acrucial cause variable in any attempt to minimise NOx emissions. Additional causes
were chosen to be all of the remaining available process variables that relate to zones
land 2.

Due to the irregular measurements of the NOx emissions, the prediction model was
selected to be of the FIR (finite impulse response) structure, as opposed to ARX.
| dentification was performed using the PLS method. The developed prediction model
has been \dlidated on the data set, which was not used in identification and it was
observed that the model was able to generalise to the data set that was not used in
training. Hence, the conclusion has been made that a prediction model achieved a
satisfactory level of accuracy. Validation has also been performed using the data from
January, February, March and April 2003. However, it was then found that the mean
of the prediction error, in particular, was significantly larger than expected. Hence, the
decision has been made that some form of model adaptation is needed, particularly in
order to account for the time-varying nature of the mean change in the prediction
error.

Model adaptation took the form of the exponentialy weighted moving average of
prediction error, i.e. the low pass filtered prediction error, which is evaluated and
continuously added to a prediction of a model. In this way, non zero mean of the
prediction error is removed and its standard deviation is decreased.

In order to improve the reliability/ robustness of the overall NOx estimator, additional
validating condition monitors have been implemented. The purpose of these condition
monitors is to validate and, in the case of instrumentation failure, infer the values of a
subset of cause variables, namely temperatures in zones 1 and 2 and the combustion
air temperatures. In this way, the overal reliability of a developed solution is greatly
improved in the case of possible instrumentation failure. Note that these validation
monitors use the same principle as those developed in AvestaPolarit application.

Future developments should focus on incorporating the developed prediction model
into the advisory system that would indicate which cause variables should be changed
and by what amount in order to minimise NOx emissions while maintaining high
productivity. Also, the model should be employed in the development of the
condition-monitoring scheme for the entire reheating furnace. This is especialy so
since sudden and rapid change in terms of NOx emissions that is not accounted for by
the developed prediction model may be a symptom of an operational problem of the
reheating furnace. In order for these schemes to be successful, a diagnostic rule base
needs to be established by using the process knowledge, which would relate results
produced by such advisory/ condition monitoring schemes and the actual process.
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8.3 Condition Monitoring of the Acid Regeneration Plant

The investigations with the acid regeneration plant have proven to be less productive
than those reported above for the reheating furnaces. However interesting aspects
have been shown concerning the capability of the Multivariate Statistics to classify
regions of process operation and to relate these regions to variations in key process
variables.

Although it has been shown to be straightforward to describe with accuracy short
periods of process operation on the basis of derived Principa Component Models,
these models could not sustain accuracy in the longer term because of the high degree
of variability in the process. Such variability arose because of the frequent changes to
process conditions that were made by process operations staff in order for them to
better understand process behaviour and improve quality. The details of such changes
were not available to MonitorMV and therefore could not be factored in to the
MonitorMV models.

Thus a specific set of experiments was carried out in May in order to determine if
particular temperatures are influential on iron oxide quality. These experiments, three
in al, have involved the collection of frequent iron oxide samples to be subsequently
analysed in the laboratory. Unfortunately the complete set of analysis results has yet
to be made available and proper conclusions mncerning the experiments cannot be
drawn. Early indications are that the signals that were considered to be potentially the
most influential upon product quality might not turn out to be so and that the search
for meaningful and measurable process signals that can be used to infer quality may
have to be widened.
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